2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)27 菱形(含解析)

上傳人:Sc****h 文檔編號(hào):81210400 上傳時(shí)間:2022-04-26 格式:DOC 頁(yè)數(shù):18 大?。?16KB
收藏 版權(quán)申訴 舉報(bào) 下載
2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)27 菱形(含解析)_第1頁(yè)
第1頁(yè) / 共18頁(yè)
2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)27 菱形(含解析)_第2頁(yè)
第2頁(yè) / 共18頁(yè)
2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)27 菱形(含解析)_第3頁(yè)
第3頁(yè) / 共18頁(yè)

下載文檔到電腦,查找使用更方便

26 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)27 菱形(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)27 菱形(含解析)(18頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 2018中考數(shù)學(xué)試題分類匯編:考點(diǎn)27 菱形 一.選擇題(共4小題) 1.(2018?十堰)菱形不具備的性質(zhì)是( ?。? A.四條邊都相等 B.對(duì)角線一定相等 C.是軸對(duì)稱圖形 D.是中心對(duì)稱圖形 【分析】根據(jù)菱形的性質(zhì)即可判斷; 【解答】解:菱形的四條邊相等,是軸對(duì)稱圖形,也是中心對(duì)稱圖形,對(duì)角線垂直不一定相等, 故選:B.   2.(2018?哈爾濱)如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=8,tan∠ABD=,則線段AB的長(zhǎng)為( ?。? A. B.2 C.5 D.10 【分析】根據(jù)菱形的性質(zhì)得出AC⊥BD,AO=CO,OB=OD,求出OB,解直

2、角三角形求出AO,根據(jù)勾股定理求出AB即可. 【解答】解:∵四邊形ABCD是菱形, ∴AC⊥BD,AO=CO,OB=OD, ∴∠AOB=90°, ∵BD=8, ∴OB=4, ∵tan∠ABD==, ∴AO=3, 在Rt△AOB中,由勾股定理得:AB===5, 故選:C.   3.(2018?淮安)如圖,菱形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為6和8,則這個(gè)菱形的周長(zhǎng)是( ?。? A.20 B.24 C.40 D.48 【分析】由菱形對(duì)角線的性質(zhì),相互垂直平分即可得出菱形的邊長(zhǎng),菱形四邊相等即可得出周長(zhǎng). 【解答】解:由菱形對(duì)角線性質(zhì)知,AO=AC=3,BO=BD=

3、4,且AO⊥BO, 則AB==5, 故這個(gè)菱形的周長(zhǎng)L=4AB=20. 故選:A.   4.(2018?貴陽(yáng))如圖,在菱形ABCD中,E是AC的中點(diǎn),EF∥CB,交AB于點(diǎn)F,如果EF=3,那么菱形ABCD的周長(zhǎng)為(  ) A.24 B.18 C.12 D.9 【分析】易得BC長(zhǎng)為EF長(zhǎng)的2倍,那么菱形ABCD的周長(zhǎng)=4BC問題得解. 【解答】解:∵E是AC中點(diǎn), ∵EF∥BC,交AB于點(diǎn)F, ∴EF是△ABC的中位線, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周長(zhǎng)是4×6=24. 故選:A.   二.填空題(共6小題) 5.(2018?香坊區(qū))

4、已知邊長(zhǎng)為5的菱形ABCD中,對(duì)角線AC長(zhǎng)為6,點(diǎn)E在對(duì)角線BD上且tan∠EAC=,則BE的長(zhǎng)為 3或5 . 【分析】根據(jù)菱形的性質(zhì)和分兩種情況進(jìn)行解答即可. 【解答】解:當(dāng)點(diǎn)E在對(duì)角線交點(diǎn)左側(cè)時(shí),如圖1所示: ∵菱形ABCD中,邊長(zhǎng)為5,對(duì)角線AC長(zhǎng)為6, ∴AC⊥BD,BO=, ∵tan∠EAC==, 解得:OE=1, ∴BE=BO﹣OE=4﹣1=3, 當(dāng)點(diǎn)E在對(duì)角線交點(diǎn)左側(cè)時(shí),如圖2所示: ∵菱形ABCD中,邊長(zhǎng)為5,對(duì)角線AC長(zhǎng)為6, ∴AC⊥BD,BO=, ∵tan∠EAC==, 解得:OE=1, ∴BE=BO﹣OE=4+1=5, 故答案為:3或5;

5、   6.(2018?湖州)如圖,已知菱形ABCD,對(duì)角線AC,BD相交于點(diǎn)O.若tan∠BAC=,AC=6,則BD的長(zhǎng)是 2?。? 【分析】根據(jù)菱形的對(duì)角線互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt△OAB,根據(jù)tan∠BAC==,求出OB=1,那么BD=2. 【解答】解:∵四邊形ABCD是菱形,AC=6, ∴AC⊥BD,OA=AC=3,BD=2OB. 在Rt△OAB中,∵∠AOD=90°, ∴tan∠BAC==, ∴OB=1, ∴BD=2. 故答案為2.   7.(2018?寧波)如圖,在菱形ABCD中,AB=2,∠B是銳角,AE⊥BC于點(diǎn)

6、E,M是AB的中點(diǎn),連結(jié) MD,ME.若∠EMD=90°,則cosB的值為 ?。? 【分析】延長(zhǎng)DM交CB的延長(zhǎng)線于點(diǎn)H.首先證明DE=EH,設(shè)BE=x,利用勾股定理構(gòu)建方程求出x即可解決問題. 【解答】解:延長(zhǎng)DM交CB的延長(zhǎng)線于點(diǎn)H. ∵四邊形ABCD是菱形, ∴AB=BC=AD=2,AD∥CH, ∴∠ADM=∠H, ∵AM=BM,∠AMD=∠HMB, ∴△ADM≌△BHM, ∴AD=HB=2, ∵EM⊥DH, ∴EH=ED,設(shè)BE=x, ∵AE⊥BC, ∴AE⊥AD, ∴∠AEB=∠EAD=90° ∵AE2=AB2﹣BE2=DE2﹣AD2, ∴22﹣

7、x2=(2+x)2﹣22, ∴x=﹣1或﹣﹣1(舍棄), ∴cosB==, 故答案為.   8.(2018?廣州)如圖,若菱形ABCD的頂點(diǎn)A,B的坐標(biāo)分別為(3,0),(﹣2,0),點(diǎn)D在y軸上,則點(diǎn)C的坐標(biāo)是?。ī?,4)?。? 【分析】利用菱形的性質(zhì)以及勾股定理得出DO的長(zhǎng),進(jìn)而求出C點(diǎn)坐標(biāo). 【解答】解:∵菱形ABCD的頂點(diǎn)A,B的坐標(biāo)分別為(3,0),(﹣2,0),點(diǎn)D在y軸上, ∴AB=5, ∴AD=5, ∴由勾股定理知:OD===4, ∴點(diǎn)C的坐標(biāo)是:(﹣5,4). 故答案為:(﹣5,4).   9.(2018?隨州)如圖,在平面直角坐標(biāo)系xOy

8、中,菱形OABC的邊長(zhǎng)為2,點(diǎn)A在第一象限,點(diǎn)C在x軸正半軸上,∠AOC=60°,若將菱形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為?。?,﹣)?。? 【分析】作B′H⊥x軸于H點(diǎn),連結(jié)OB,OB′,根據(jù)菱形的性質(zhì)得到∠AOB=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BOB′=75°,OB′=OB=2,則∠AOB′=∠BOB′﹣∠AOB=45°,所以△OBH為等腰直角三角形,根據(jù)等腰直角三角形性質(zhì)可計(jì)算得OH=B′H=,然后根據(jù)第四象限內(nèi)點(diǎn)的坐標(biāo)特征寫出B′點(diǎn)的坐標(biāo). 【解答】解:作B′H⊥x軸于H點(diǎn),連結(jié)OB,OB′,如圖, ∵四邊形OABC為菱形, ∴

9、∠AOC=180°﹣∠C=60°,OB平分∠AOC, ∴∠AOB=30°, ∵菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至第四象限OA′B′C′的位置, ∴∠BOB′=75°,OB′=OB=2, ∴∠AOB′=∠BOB′﹣∠AOB=45°, ∴△OBH為等腰直角三角形, ∴OH=B′H=OB′=, ∴點(diǎn)B′的坐標(biāo)為(,﹣). 故答案為:(,﹣).   10.(2018?黑龍江)如圖,在平行四邊形ABCD中,添加一個(gè)條件 AB=BC或AC⊥BD 使平行四邊形ABCD是菱形. 【分析】根據(jù)菱形的判定方法即可判斷. 【解答】解:當(dāng)AB=BC或AC⊥BD時(shí),四邊形ABCD是菱

10、形. 故答案為AB=BC或AC⊥BD.   三.解答題(共10小題) 11.(2018?柳州)如圖,四邊形ABCD是菱形,對(duì)角線AC,BD相交于點(diǎn)O,且AB=2. (1)求菱形ABCD的周長(zhǎng); (2)若AC=2,求BD的長(zhǎng). 【分析】(1)由菱形的四邊相等即可求出其周長(zhǎng); (2)利用勾股定理可求出BO的長(zhǎng),進(jìn)而解答即可. 【解答】解:(1)∵四邊形ABCD是菱形,AB=2, ∴菱形ABCD的周長(zhǎng)=2×4=8; (2)∵四邊形ABCD是菱形,AC=2,AB=2 ∴AC⊥BD,AO=1, ∴BO=, ∴BD=2   12.(2018?遂寧)如圖,在?ABCD中,

11、E,F(xiàn)分別是AD,BC上的點(diǎn),且DE=BF,AC⊥EF.求證:四邊形AECF是菱形. 【分析】根據(jù)對(duì)角線互相垂直的平行四邊形是菱形即可證明; 【解答】證明:∵四邊形ABCD是平行四邊形, ∴AD=BC,AD∥BC, ∵DE=BF, ∴AE=CF,∵AE∥CF, ∴四邊形AECF是平行四邊形, ∵AC⊥EF, ∴四邊形AECF是菱形.   13.(2018?郴州)如圖,在?ABCD中,作對(duì)角線BD的垂直平分線EF,垂足為O,分別交AD,BC于E,F(xiàn),連接BE,DF.求證:四邊形BFDE是菱形. 【分析】根據(jù)平行四邊形的性質(zhì)以及全等三角形的判定方法證明出△DOE≌△B

12、OF,得到OE=OF,利用對(duì)角線互相平分的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用對(duì)角線互相垂直的平行四邊形是菱形得出四邊形BFDE為菱形. 【解答】證明:∵在?ABCD中,O為對(duì)角線BD的中點(diǎn), ∴BO=DO,∠EDB=∠FBO, 在△EOD和△FOB中, , ∴△DOE≌△BOF(ASA); ∴OE=OF, 又∵OB=OD, ∴四邊形EBFD是平行四邊形, ∵EF⊥BD, ∴四邊形BFDE為菱形.   14.(2018?南京)如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點(diǎn),且OA=OB=OD.求證: (1)∠BO

13、D=∠C; (2)四邊形OBCD是菱形. 【分析】(1)延長(zhǎng)AO到E,利用等邊對(duì)等角和角之間關(guān)系解答即可; (2)連接OC,根據(jù)全等三角形的判定和性質(zhì)以及菱形的判定解答即可. 【解答】證明:(1) 延長(zhǎng)OA到E, ∵OA=OB, ∴∠ABO=∠BAO, 又∠BOE=∠ABO+∠BAO, ∴∠BOE=2∠BAO, 同理∠DOE=2∠DAO, ∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO) 即∠BOD=2∠BAD, 又∠C=2∠BAD, ∴∠BOD=∠C; (2)連接OC, ∵OB=OD,CB=CD,OC=OC, ∴△OBC≌△ODC,

14、 ∴∠BOC=∠DOC,∠BCO=∠DCO, ∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO, ∴∠BOC=∠BOD,∠BCO=∠BCD, 又∠BOD=∠BCD, ∴∠BOC=∠BCO, ∴BO=BC, 又OB=OD,BC=CD, ∴OB=BC=CD=DO, ∴四邊形OBCD是菱形.   15.(2018?呼和浩特)如圖,已知A、F、C、D四點(diǎn)在同一條直線上,AF=CD,AB∥DE,且AB=DE. (1)求證:△ABC≌△DEF; (2)若EF=3,DE=4,∠DEF=90°,請(qǐng)直接寫出使四邊形EFBC為菱形時(shí)AF的長(zhǎng)度. 【分析】(1)根據(jù)SAS

15、即可證明. (2)解直角三角形求出DF、OE、OF即可解決問題; 【解答】(1)證明:∵AB∥DE, ∴∠A=∠D, ∵AF=CD, ∴AF+FC=CD+FC, 即AC=DF, ∵AB=DE, ∴△ABC≌△DEF. (2)如圖,連接AB交AD于O. 在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4, ∴DF==5, ∵四邊形EFBC是菱形, ∴BE⊥CF,'∴EO==, ∴OF=OC==, ∴CF=, ∴AF=CD=DF﹣FC=5﹣=.   16.(2018?內(nèi)江)如圖,已知四邊形ABCD是平行四邊形,點(diǎn)E,F(xiàn)分別是AB,BC上的點(diǎn),AE=

16、CF,并且∠AED=∠CFD. 求證:(1)△AED≌△CFD; (2)四邊形ABCD是菱形. 【分析】(1)由全等三角形的判定定理ASA證得結(jié)論; (2)由“鄰邊相等的平行四邊形為菱形”證得結(jié)論. 【解答】(1)證明:∵四邊形ABCD是平行四邊形, ∴∠A=∠C. 在△AED與△CFD中, ∴△AED≌△CFD(ASA); (2)由(1)知,△AED≌△CFD,則AD=CD. 又∵四邊形ABCD是平行四邊形, ∴四邊形ABCD是菱形.   17.(2018?泰安)如圖,△ABC中,D是AB上一點(diǎn),DE⊥AC于點(diǎn)E,F(xiàn)是AD的中點(diǎn),F(xiàn)G⊥BC于點(diǎn)G,與

17、DE交于點(diǎn)H,若FG=AF,AG平分∠CAB,連接GE,CD. (1)求證:△ECG≌△GHD; (2)小亮同學(xué)經(jīng)過探究發(fā)現(xiàn):AD=AC+EC.請(qǐng)你幫助小亮同學(xué)證明這一結(jié)論. (3)若∠B=30°,判定四邊形AEGF是否為菱形,并說明理由. 【分析】(1)依據(jù)條件得出∠C=∠DHG=90°,∠CGE=∠GED,依據(jù)F是AD的中點(diǎn),F(xiàn)G∥AE,即可得到FG是線段ED的垂直平分線,進(jìn)而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD; (2)過點(diǎn)G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GP

18、D,依據(jù)EC=PD,即可得出AD=AP+PD=AC+EC; (3)依據(jù)∠B=30°,可得∠ADE=30°,進(jìn)而得到AE=AD,故AE=AF=FG,再根據(jù)四邊形AECF是平行四邊形,即可得到四邊形AEGF是菱形. 【解答】解:(1)∵AF=FG, ∴∠FAG=∠FGA, ∵AG平分∠CAB, ∴∠CAG=∠FGA, ∴∠CAG=∠FGA, ∴AC∥FG, ∵DE⊥AC, ∴FG⊥DE, ∵FG⊥BC, ∴DE∥BC, ∴AC⊥BC, ∴∠C=∠DHG=90°,∠CGE=∠GED, ∵F是AD的中點(diǎn),F(xiàn)G∥AE, ∴H是ED的中點(diǎn), ∴FG是線段ED的垂直平分線,

19、 ∴GE=GD,∠GDE=∠GED, ∴∠CGE=∠GDE, ∴△ECG≌△GHD; (2)證明:過點(diǎn)G作GP⊥AB于P, ∴GC=GP,而AG=AG, ∴△CAG≌△PAG, ∴AC=AP, 由(1)可得EG=DG, ∴Rt△ECG≌Rt△GPD, ∴EC=PD, ∴AD=AP+PD=AC+EC; (3)四邊形AEGF是菱形, 證明:∵∠B=30°, ∴∠ADE=30°, ∴AE=AD, ∴AE=AF=FG, 由(1)得AE∥FG, ∴四邊形AECF是平行四邊形, ∴四邊形AEGF是菱形.   18.(2018?廣西)如圖,在?ABCD中,AE⊥B

20、C,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF. (1)求證:?ABCD是菱形; (2)若AB=5,AC=6,求?ABCD的面積. 【分析】(1)利用全等三角形的性質(zhì)證明AB=AD即可解決問題; (2)連接BD交AC于O,利用勾股定理求出對(duì)角線的長(zhǎng)即可解決問題; 【解答】(1)證明:∵四邊形ABCD是平行四邊形, ∴∠B=∠D, ∵AE⊥BC,AF⊥CD, ∴∠AEB=∠AFD=90°, ∵BE=DF, ∴△AEB≌△AFD ∴AB=AD, ∴四邊形ABCD是平行四邊形. (2)連接BD交AC于O. ∵四邊形ABCD是菱形,AC=6, ∴AC⊥BD, A

21、O=OC=AC=×6=3, ∵AB=5,AO=3, ∴BO===4, ∴BD=2BO=8, ∴S平行四邊形ABCD=×AC×BD=24.   19.(2018?揚(yáng)州)如圖,在平行四邊形ABCD中,DB=DA,點(diǎn)F是AB的中點(diǎn),連接DF并延長(zhǎng),交CB的延長(zhǎng)線于點(diǎn)E,連接AE. (1)求證:四邊形AEBD是菱形; (2)若DC=,tan∠DCB=3,求菱形AEBD的面積. 【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四邊形AEBD是平行四邊形,再根據(jù)BD=AD可得結(jié)論; (2)解直角三角形求出EF的長(zhǎng)即可解決問題; 【解答】(1)證明:∵四邊形ABCD是平

22、行四邊形, ∴AD∥CE, ∴∠DAF=∠EBF, ∵∠AFD=∠EFB,AF=FB, ∴△AFD≌△BFE, ∴AD=EB,∵AD∥EB, ∴四邊形AEBD是平行四邊形, ∵BD=AD, ∴四邊形AEBD是菱形. (2)解:∵四邊形ABCD是平行四邊形, ∴CD=AB=,AB∥CD, ∴∠ABE=∠DCB, ∴tan∠ABE=tan∠DCB=3, ∵四邊形AEBD是菱形, ∴AB⊥DE,AF=FB,EF=DF, ∴tan∠ABE==3, ∵BF=, ∴EF=, ∴DE=3, ∴S菱形AEBD=?AB?DE=?3=15.   20.(2018?

23、烏魯木齊)如圖,在四邊形ABCD中,∠BAC=90°,E是BC的中點(diǎn),AD∥BC,AE∥DC,EF⊥CD于點(diǎn)F. (1)求證:四邊形AECD是菱形; (2)若AB=6,BC=10,求EF的長(zhǎng). 【分析】(1)根據(jù)平行四邊形和菱形的判定證明即可; (2)根據(jù)菱形的性質(zhì)和三角形的面積公式解答即可. 【解答】證明:(1)∵AD∥BC,AE∥DC, ∴四邊形AECD是平行四邊形, ∵∠BAC=90°,E是BC的中點(diǎn), ∴AE=CE=BC, ∴四邊形AECD是菱形; (2)過A作AH⊥BC于點(diǎn)H, ∵∠BAC=90°,AB=6,BC=10, ∴AC=, ∵, ∴AH=, ∵點(diǎn)E是BC的中點(diǎn),BC=10,四邊形AECD是菱形, ∴CD=CE=5, ∵S?AECD=CE?AH=CD?EF, ∴EF=AH=.   18

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!