《重慶市2018年中考數(shù)學(xué)一輪復(fù)習(xí) 第二章 方程(組)與不等式(組)第4節(jié) 不等式(組)的解法及不等式的應(yīng)用練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《重慶市2018年中考數(shù)學(xué)一輪復(fù)習(xí) 第二章 方程(組)與不等式(組)第4節(jié) 不等式(組)的解法及不等式的應(yīng)用練習(xí)(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第4節(jié) 不等式(組)的解法及不等式的應(yīng)用
(必考,1~2道,近3年每年考查1道,4~14分)
玩轉(zhuǎn)重慶10年中考真題(2008~2017年)
命題點(diǎn)1 一元一次不等式的解法及解集表示(10年4考,與分式化簡求值結(jié)合考查1次)
1. (2008重慶3題4分)不等式2x-4≥0的解集在數(shù)軸上表示正確的是( )
2. (2013重慶A卷14題4分)不等式2x-3≥x的解集是________.
3. (2011重慶18題6分)解不等式2x-3<,并把解集在數(shù)軸上表示出來.
第3題圖
命題點(diǎn)2 一元一次不等式組的解法(10年11考,
2、與概率結(jié)合考查4次)
4. (2010重慶3題4分)不等式組的解集為( )
A. x>3 B. x≤4 C. 3<x<4 D. 3<x≤4
5. (2009重慶18題6分)解不等式組:.
命題點(diǎn)3 一元一次不等式組的解的應(yīng)用(10年8考,與解分式方程結(jié)合和與概率結(jié)合考查各4次)
6. (2017重慶A卷12題4分)若數(shù)a使關(guān)于x的分式方程+=4的解為正數(shù),且使關(guān)于y的不等式組的解集為y<-2,則符合條件的所有整數(shù)a的和為( )
A. 10 B. 12 C. 14 D. 16
7. (2017重慶
3、B卷12題4分)若數(shù)a使關(guān)于x的不等式組有且僅有四個整數(shù)解,且使關(guān)于y的分式方程+=2有非負(fù)數(shù)解,則所有滿足條件的整數(shù)a的值之和是( )
A. 3 B. 1 C. 0 D. -3
8. (2016重慶A卷12題4分)從-3,-1,,1,3這五個數(shù)中,隨機(jī)抽取一個數(shù),記為a.若數(shù)a使關(guān)于x的不等式組無解,且使關(guān)于x的分式方程 -=-1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是( )
A. -3 B. -2 C. - D.
9. (2016重慶B卷12題4分)如果關(guān)于x的分式方程-3= 有負(fù)分?jǐn)?shù)解,且關(guān)于x的不
4、等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是( )
A. -3 B. 0 C. 3 D. 9
拓展訓(xùn)練
1. 從-2,-1,0,2,5這五個數(shù)中,隨機(jī)抽取一個數(shù),記為m,若數(shù)m使關(guān)于x的不等式組無解,且使關(guān)于x的分式方程+=-1有非負(fù)整數(shù)解,那么這五個數(shù)中所有滿足條件的m的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
命題點(diǎn)4 一次不等式的實際應(yīng)用(10年7考,近2年均與一元二次方程應(yīng)用結(jié)合)
類型一 不含百分率的實際應(yīng)用
10. (2017重慶A卷23題節(jié)選4分)某地大力發(fā)展經(jīng)濟(jì)作物,其中果樹種植已初具規(guī)模.今年受氣候、雨水等因素的影
5、響,櫻桃較去年有小幅度的減產(chǎn),而枇杷有所增產(chǎn).
該地某果農(nóng)今年收獲櫻桃和枇杷共400千克,其中枇杷的產(chǎn)量不超過櫻桃產(chǎn)量的7倍,求該果農(nóng)今年收獲櫻桃至少多少千克?
11. (2016重慶A卷23題節(jié)選5分)近期豬肉價格不斷走高,引起了民眾與政府的高度關(guān)注,當(dāng)市場豬肉的平均價格達(dá)到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%.某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?
12. (2014重慶A卷23題節(jié)選5分)為豐富
6、居民業(yè)余生活,某居民區(qū)組建籌委會,該籌委會動員居民自愿集資建立一個書刊閱覽室.經(jīng)預(yù)算,一共需要籌資30000元,其中一部分用于購買書桌、書架等設(shè)施,另一部分用于購買書刊.籌委會計劃購買書刊的資金不少于購買書桌、書架等設(shè)施資金的3倍,問最多用多少資金購買書桌、書架等設(shè)施?
13. (2013重慶A卷23題節(jié)選4分)隨著鐵路客運(yùn)量的不斷增長,重慶火車北站越來越擁擠,為了滿足鐵路交通的快速發(fā)展,該火車站從去年開始啟動了擴(kuò)建工程.若甲隊每月的施工費(fèi)為100萬元,乙隊每月的施工費(fèi)比甲隊多50萬元.在保證工程質(zhì)量的前提下,為了縮短工期,擬安排甲、乙兩隊分工合作完成這項
7、工程.在完成這項工程中,甲隊施工時間是乙隊施工時間的2倍,那么,甲隊最多施工幾個月才能使工程款不超過1500萬元?(甲、乙兩隊的施工時間按月取整數(shù))
類型二 含百分率的實際應(yīng)用
14. (2014重慶B卷23題10分)某生態(tài)農(nóng)業(yè)園種植的青椒除了運(yùn)往市區(qū)銷售外,還可以讓市民親自去生態(tài)農(nóng)業(yè)園購買.已知今年5月份該青椒在市區(qū)、園區(qū)的銷售價格分別為6元/千克、4元/千克,今年5月份一共銷售了3000千克,總銷售額為16000元.
(1)今年5月份該青椒在市區(qū)、園區(qū)各銷售了多少千克?
(2)6月份是青椒產(chǎn)出旺季,為了促銷,生態(tài)農(nóng)業(yè)園決定6月份將該青椒在市區(qū)、園
8、區(qū)的銷售價格均在今年5月份的基礎(chǔ)上降低a%.預(yù)計這種青椒在市區(qū)、園區(qū)的銷售量將在今年5月份的基礎(chǔ)上分別增長30%、20%.要使得6月份該青椒的總銷售額不低于18360元,則a的最大值是多少?
拓展訓(xùn)練
2. 某文具店今年1月份購進(jìn)一批筆記本,共2290本,每本進(jìn)價為10元,該文具店決定從2月份開始進(jìn)行銷售,若每本售價為11元,則可全部售出;且每本售價每增長0.5元,銷量就減少15本.
(1)若該種筆記本在2月份的銷售量不低于2200本,則2月份售價應(yīng)不高于多少元?
(2)由于生產(chǎn)商提高造紙工藝,該筆記本的進(jìn)價提高了10%,文具店為了增加筆記本的銷量,進(jìn)行了銷售調(diào)價整理,售
9、價比2月份在(1)的條件下的最高售價減少了m%,結(jié)果3月份的銷量比2月份在(1)的條件下的最低銷量增加了m%,3月份的銷售利潤達(dá)到6600元,求m的值.
答案
1. C 2. x≥3
3. 解:去分母得,3(2x-3)
10、(4分)
∴不等式組的解集為-3<x≤2.(6分)
6. A 【解析】解方程+=4得,x=且x≠1,又∵分式方程的解為正數(shù),∴>0,解得a<6,∵x≠1,即a≠2,∴a<6且a≠2;解不等式組 ,解不等式①得,y<-2,解不等式②得,y≤a,∵不等式組的解集為y<-2,∴a≥-2,∴-2≤a<6,且a≠2,∴整數(shù)a有-2,-1,0,1,3,4,5,∴-2-1+0+1+3+4+5=10.
7. B 【解析】解不等式組得,,∵原不等式組有且僅有四個整數(shù)解,∴-1≤-<0,∴-4<a≤3;解分式方程得y=,∵原分式方程有非負(fù)數(shù)解,∴y=≥0,且y=≠2,解得a≥-2且a≠2;綜上所述,-2≤a
11、≤3,且a≠2,∴所有的整數(shù)a為:-2,-1,0,1,3,其和為:-2-1+0+1+3=1.
8. B 【解析】解不等式組得,,∵原不等式組無解,∴a≤1,則a不能取這五個數(shù)中的3;解分式方程得x=,又∵分式方程有整數(shù)解,則為整數(shù),且≠3,∴a只能從-3,-1,,1中?。?,1,∴滿足條件的a的值的和為-3+1=-2.
9. D 【解析】解分式方程得,x=a-2,∵方程有負(fù)分?jǐn)?shù)解,a為整數(shù),∴a-2<0,且a-2為分?jǐn)?shù),a為整數(shù),∴a<4,且a為奇數(shù);解不等式組得,,∵原不等式組的解集為x<-2,∴2a+4≥-2,∴a≥-3,綜上可知a=-3或-1或1或3,則其積為(-3)×(-1)×1×
12、3=9.
拓展訓(xùn)練1 B 【解析】不等式組整理得:,由不等式組無解,得到m+2≥-2m-1,
解得m≥-1,即m=-1,0,2,5,
分式方程去分母得:x-m+2=-x+2,即x=m,∵x有非負(fù)整數(shù)解,∴m≥0且m為偶數(shù),
∴m=0,2,
則所有滿足條件的m的個數(shù)是2.
10. 解:設(shè)該果農(nóng)今年收獲櫻桃x千克,根據(jù)題意得
400-x≤7x,(3分)
解不等式得x≥50,
答:該果農(nóng)今年收獲櫻桃至少50 kg.(4分)
11. 解:設(shè)今年年初豬肉的價格為每千克x元,由題意得,
(1+60%)x·2.5≥100,(2分)
解得x≥25,(4分)
答:今年年初豬肉的最低價格
13、為每千克25元.(5分)
12. 解:設(shè)用于購買書桌、書架等設(shè)施的資金為x元,則用于購買書刊的資金為(30000-x)元,
由題意得:30000-x≥3x,(3分)
解得x≤7500.
答:最多花7500元購買書桌、書架等設(shè)施.(5分)
13. 解:設(shè)在完成這項工程中,甲隊施工m個月,則乙隊施工 個月,
根據(jù)題意得:100m+(100+50)·≤1500,(2分)
解得m≤8,
∵m為整數(shù),
∴m的最大整數(shù)值為8.(3分)
答:在完成這項工程中,甲隊最多施工8個月才能使工程款不超過1500萬元.(4分)
14. 解:(1)設(shè)今年5月份該青椒在市區(qū)銷售了x千克,在園區(qū)銷售了
14、y千克.
根據(jù)題意得:,
解得:.
答:今年5月份該青椒在市區(qū)銷售了2000千克,在園區(qū)銷售了1000千克.(5分)
(2)根據(jù)題意,列不等式得:
6(1-a%)×2000×(1+30%)+4(1-a%)×1000×(1+20%)≥18360,
15600(1- a%)+4800(1- a%)≥18360,
20400(1- a%)≥18360,
解得a≤10,
∴a的最大值是10.(10分)
拓展訓(xùn)練2 解:(1)設(shè)2月份售價應(yīng)為x元,依題意得:
2290-≥2200,
解得x≤14.
答:2月份售價應(yīng)不高于14元;
(2)[14(1-m%)-10(1+10%)]×2200(1+m%)=6600,令m%=t,
化簡得2t2-t=0,
解得t1=0(舍去),t2=0.5,
∴m=50.
答:m的值是50.
8