0535-安全帽注塑模具設(shè)計及模腔三維造型CADCAM【優(yōu)秀含9張CAD圖】
0535-安全帽注塑模具設(shè)計及模腔三維造型CADCAM【優(yōu)秀含9張CAD圖】,優(yōu)秀含9張CAD圖,安全帽,注塑,模具設(shè)計,三維,造型,cadcam,優(yōu)秀,優(yōu)良,cad
目 錄 中文摘要 .3 Abstract 4 第 1 章 緒論 .5 第 2 章 零件材料的選擇及材料性能分析 .5 2.1 塑料制品的設(shè)計依據(jù)及選材依據(jù) 5 2.2 塑件體積估算 6 2.3 塑件質(zhì)量計算 6 第 3 章 注射機(jī)的選用及校核 .6 3.1 注射機(jī)的選用 6 3.2 注射機(jī)有關(guān)工藝參數(shù)的校核 7 第 4 章 澆注系統(tǒng)設(shè)計 .9 4.1 按制品特點選擇澆注形式 9 4.2 澆口套的設(shè)計 9 4.3 定位圈的設(shè)計 10 第 5 章 成型零件的設(shè)計 .10 5.1 型腔數(shù)的確定 10 5.2 成型零件的結(jié)構(gòu)設(shè)計 10 5.3 分型面的確定 10 5.4 成型零件工作尺寸的計算 11 5.5 模具型腔側(cè)壁和底板厚度的計算 12 5.6 模板設(shè)計 14 第 6 章 合模導(dǎo)向機(jī)構(gòu)的設(shè)計 .15 6.1 導(dǎo)柱直徑的計算及選用 15 6.2 導(dǎo)套的選用 16 第 7 章 脫模機(jī)構(gòu)的設(shè)計 .16 7.1 結(jié)構(gòu)形式設(shè)計 16 7.2 頂桿布置形式 16 7.3 脫模力的計算 .17 7.4 推桿長度計算 .17 7.5 推桿強(qiáng)度計算與應(yīng)力校核 .18 7.6 推板厚度計算 .18 1 第 8 章 排溢、引氣系統(tǒng)的設(shè)計 .19 8.1 排溢設(shè)計 .19 8.2 引氣設(shè)計 .19 第 9 章 冷卻系統(tǒng)的設(shè)計 .19 9.1 冷卻通道的理論計算 19 第 10 章 側(cè)向分型與抽芯機(jī)構(gòu)設(shè)計 .21 10.1 側(cè)向分型與抽芯機(jī)構(gòu)的選用 21 10.2 抽心距的計算 21 10.3 抽芯機(jī)構(gòu)各尺寸的確定 21 10.4 抽芯力及抽芯所需開模力的計算 22 10.5 型芯結(jié)構(gòu)布置設(shè)計及其它部件選材 22 第 11 章 模架選擇 .23 第 12 章 模腔三維造型 CAD/CAM .23 12.1 構(gòu)建零件實體造型 .23 12.2 模腔分模 .23 12.3 模腔模擬加工 .24 12.4 生成 NC 文件 .25 鳴 謝 .26 參考文獻(xiàn) .27 2 中英文摘要 本文主要講述了安全帽注塑模的設(shè)計。內(nèi)容包括制品材料的選擇及材料性能的 分析、注射機(jī)的選用、澆注系統(tǒng)、成型零件、冷卻系統(tǒng)和抽芯機(jī)構(gòu)的設(shè)計等部分。 除此之外,還包括模具型腔的 CAD/CAM 部分,并利用先進(jìn)軟件將其加工部分直 接生成 NC 文件。本文強(qiáng)調(diào)利用現(xiàn)代計算機(jī)輔助設(shè)計制造技術(shù),運(yùn)用了 Pro/E、CAXA 等國內(nèi)外著名軟件進(jìn)行輔助設(shè)計。既保證了產(chǎn)品的質(zhì)量,還大大地 提高了制造生產(chǎn)率,縮短了產(chǎn)品更新的周期。 關(guān)鍵詞:安全帽;注塑模;CAD/CAM 3 Abstract This text mainly narrates the design of injection mould for a safety helmet, including the selection of product material and its property analysis, the selection of injection machine, the design of feed system, shaping part, cooling system and core pulling, etc. Besides this, it also covers the CAD/CAM for the mold cavity, and generating G-Code instructions for CNC machine by the advanced software. In this text, the author emphasizes the use of modern computer assisted design and manufacturing technology, and apply some famous software, such as Pro/E, CAXA, to design. Through this, it not only guarantees the performance, but also raises working efficiency greatly and shortens the production cycle. Key Words: safety helmet; injection mould; CAD/CAM 4 第 1 章 緒論 這是一篇關(guān)于安全帽注塑模具設(shè)計及模腔三維造型 CAD/CAM 的畢業(yè)設(shè)計說 明書。 隨著塑料工業(yè)的發(fā)展,塑料注射模已經(jīng)成為制造塑料制造品的主要手段之一, 且發(fā)展成為最有前景的模具之一。實際上,塑料制品是目標(biāo),塑料注射模是實現(xiàn)目 標(biāo)的一種手段,所以不能“孤立地為模具而只考慮模具” ,應(yīng)從系統(tǒng)工程角度出發(fā), 把塑料注射模作為塑料注射成型加工系統(tǒng)中的一個環(huán)節(jié),這樣在設(shè)計與制造塑料注 射模時,就應(yīng)把這個系統(tǒng)中的其他環(huán)節(jié)作為塑料注射模設(shè)計與制造的考慮因素。本 文從零件出發(fā),詳細(xì)講述了模具設(shè)計各部分,直到模腔三維造型的仿真加工完成這 整一個過程。 第 2 章 零件材料的選擇及材料性能分析 2.1 塑料制品的設(shè)計依據(jù)及選材依據(jù) ]1[ 安全帽、安全帶、防護(hù)網(wǎng),被稱為施工安全防護(hù)的“三寶” 。建筑工地的環(huán)境 比較復(fù)雜,漏洞比較多,佩戴安全帽,可以防止落物,又可以防止碰撞。很多事故 案例表明,關(guān)鍵時候安全帽會發(fā)揮很大的作用。因此對安全帽的性能要求就很明確: 硬度高,不破損,不擦傷。其使用要求也較高:不僅漂亮瀟灑、造型美觀,而且完全 符合國標(biāo) GB2811-89 要求。經(jīng)過+50℃~-10 ℃,高低溫及淋水處理后,沖擊吸收 性能,耐穿透性能,剛性強(qiáng)度,電絕緣性能,均能達(dá)到或超過安全使用要求。 本設(shè)計帽殼采用昂貴的日本進(jìn)口超高抗沖 ABS 工程塑料,彈性好,強(qiáng)度高, 安全性能特好。加寬帽沿加強(qiáng)肋,使帽殼整體更堅固。帽殼前后還有透氣孔,佩戴 起來通風(fēng),使人感覺舒適。 ABS(Acrylonitrile/butadiene/styrene compolymer)即為在聚苯乙烯分子中導(dǎo)入 了丙烯腈、丁二烯等異種單體后成為改性共聚物,也可稱為改性聚苯乙烯,具有比 聚苯乙烯優(yōu)越的使用性能和工藝特性。其流動性中等,隨溫度變化較大:料溫高則 流動性增大。所以成型時宜調(diào)節(jié)溫度來控制流動性。模具設(shè)計時應(yīng)根據(jù)所用塑料的 流動性,選用合理的結(jié)構(gòu)。成形時也可控制料溫、模溫及注射壓力、注射速度等因 素來適當(dāng)?shù)卣{(diào)節(jié)成型需要。其具體的成型條件如下表 1 所示: 5 表 1:ABS 塑料成型條件 適用 注射機(jī) 類型 密度 (g/cm )3 注射 壓力 (MPa) 螺桿 轉(zhuǎn)速 (r/min) 計算收 縮率 (%) 模具溫 度 (0C) 預(yù)熱 吸水率 24h (%) 拉伸屈 服強(qiáng)度 (MPa) 抗拉屈 服強(qiáng)度 (MPa) 噴嘴 溫度 (0C) 溫度 0C 時間 /h 螺桿 柱塞式 均可 1.03~1. 07 60~ 100 30 0.3~0. 8 50~80 80~8 5 2~3 0.3 1800 50 170~ 180 2.2 塑件體積估算 按制品尺寸要求在 “CAXA 制造工程師”軟件畫出零件實體,然后點擊 “工具”→“查詢”→“零件屬性”即可得出制品所需的塑件體積為 297285.996 。3m 2.3 塑件質(zhì)量計算 ABS 的密度為 1.03~1.07 g/cm 取 =1.05 g/cm3?3 塑件質(zhì)量 M= V=1.05 g/cm 297285.996 cm =311.85 g??10? 第 3 章 注塑機(jī)的選用 3.1 注射機(jī)類型的選擇 ]1[ 3.1.1 從生產(chǎn)率考慮 依本產(chǎn)品的生產(chǎn)綱領(lǐng)(大批量生產(chǎn)) ,為提高生產(chǎn)率,擬選用臥式注射機(jī)。其 優(yōu)點如下: 開模后塑件按自重落下,便于實現(xiàn)自動化操作; 螺桿式注射裝置塑化能力大、均勻,注射壓力可達(dá) 7000——8000 ,壓2cmN 力損失小,塑件內(nèi)壓力、定向性小,減少變形和開裂傾向。 3.1.2 從制品材料的成型條件 從制品材料的成型條件知其適用注射機(jī)類型為螺桿式或柱塞式均可。柱塞式注 射機(jī)結(jié)構(gòu)簡單,使用方便,通過料筒和活塞達(dá)到塑化與注射兩個基本作用。但控制 溫度和壓力比較困難。螺桿式注射成型機(jī)由一個螺桿和一個料筒組成。塑料依靠螺 桿在料筒內(nèi)的轉(zhuǎn)動而加熱塑化,提高了注射成型質(zhì)量,并可增大注射量,擴(kuò)大了注 射成型塑料的范圍。因此得到了廣泛的應(yīng)用。 6 3.1.3 由制品體積計算注射機(jī)的最大注射量 設(shè)計模具時,應(yīng)使成型制品每次所需注射量總量 小于注射機(jī)的最大注射件V 量 。即注V件V?%80注 式中: —塑件與澆注系統(tǒng)的體積( ) ;件 3cm —注射機(jī)的注射量( ) ;注 —最大注射容量的利用系數(shù)。%80 而由上知 為 297285.996 (合 297.3 ,所以可得:件V3)3c /注V?件 %80 通過計算可得: 371.6 。注 3cm 綜上所述,只能選擇螺桿式注射機(jī)( 60 ) 。結(jié)合本國國情,初選國產(chǎn)注 XS-ZY-1000 型臥式注射機(jī)。該注射機(jī)的主要技術(shù)參數(shù)如下表 2 所示: 表 2:XS-ZY-1000 型臥式注射機(jī)主要技術(shù)參數(shù) 最大理論 注射量( )3cm注射方式 最大 開模 行程 注射速 率 (g/s) 最大模 具厚度 ( m ) 螺桿直 徑 ( ) 最小模具 厚度 ( m ) 注射壓 力 (Mpa ) 鎖模力 (KN ) 模具定 位孔直 徑 (mm ) 噴嘴球 半徑 ( m ) 1000 螺桿 式 700 70 700 70 300 10800 4500 150 18 3.2 注射機(jī)有關(guān)工藝參數(shù)的校核 3.2.1 注射壓力的校核 塑件成形所需的注射壓力應(yīng)小開或等于注射機(jī)的額定注射壓力,其關(guān)系按下式 校核 成p?注 式中 —塑件成型所需的注射壓力(Mpa)成 —所選注射機(jī)的額定注射壓力(Mpa)注 已知 =60~100(Mpa); =10800(Mpa)成p注 所以滿足 成p?注 3.2.2 鎖模力的校核 模具所需的最大鎖模力應(yīng)小于或等于注射機(jī)的額定鎖模力,其關(guān)系按下式校核: 7 ( )10AkpC?FkN 式中 ——安全系數(shù),常取 =1.1~1.2,這里取值 1.1; ——熔融塑料在型腔內(nèi)的平均壓力( 。根據(jù)經(jīng))MPa 驗,型腔內(nèi)平均壓力 常取 20~40 。這里取 30 ;CpMPaa A——塑件與澆注系統(tǒng)在分型面上的總投影面積( cm ) ;2 —注射機(jī)額定鎖模力。 F 已知 A ab?? 式中 a——橢圓長半軸,取 140mm; b——橢圓短半軸,取 130mm, 所以 A = 即:),(12.573014. m?? F )(84.6. kN?? 所選注射機(jī)的鎖模力 F=4500 1886.84 ,所以所選注射機(jī)滿足鎖模力要求。kNk 3.2.3 模具閉合厚度的校核 模具閉合時的厚度在注射機(jī),動、定模板的最在閉合高度和最小閉合高度之間, 其關(guān)系按下式校核: minH?max 式中 ——注射機(jī)允許的最小模具厚度(mm )i ——模具閉合厚度(mm) ——注射機(jī)允許的最大模具厚度(mm)max 已知 = 300 mm, =700 mm,minH 初步可設(shè) =mH其 他動推 桿 行 程定 hh?? 式中 ——定模的高度,比制品高度高,初取為 200mm;定h ——推桿行程,比制品高度略高,初取為推 桿 行 程 170mm; ——動模不包括制品型腔部位的高度,初取為 40;動 ——其他厚度包括動定模板厚度、支承板厚度等,其 他h 取為 200mm。 代入上述數(shù)據(jù)可得: =200+170+40+200=610(mm)mH 所以模具閉合時的厚度能滿足要求,即: =300 =610 =700(mm)min?ax 3.2.4 開模行程校核 :[《 3 8 ~5HL21(??)) ( m10 式中 ――脫模距離( ) ,這里為 =157.5 ;1 1H ——包括澆注系統(tǒng)在內(nèi)的制品高度( ) ,這里為2 =190 ;2Hm ――注射機(jī)開模行程(即移動模板行程) ( ) 。L 已知所選注射機(jī)最大開模行程 =700 ,故而可知m 157.5+190+5.5=353( ),能滿足要求。? 液壓-機(jī)械式鎖模機(jī)構(gòu)的最大開模行程由連桿機(jī)構(gòu)的最大行程決定。而與 模具厚度無關(guān)。 第 4 章 澆注系統(tǒng)的設(shè)計 澆注系統(tǒng)是熔融塑料從注射機(jī)噴嘴到型腔的必經(jīng)通道,它直接關(guān)系到成型的難 易和制品的質(zhì)量,是注射模設(shè)計中的重要組成部分。其作用是使熔融塑料平穩(wěn)、有 序地填充到型腔中去且把壓力充分地傳遞到各個部位,以獲得組織致密、外形清晰、 美觀的制品。 4.1 按制品特點選擇澆注形式 安全帽的結(jié)構(gòu)特點是大而深的殼體零件。為此擬定直接澆口類型。直接澆口是 直接和主流道連接,由主流道直接進(jìn)料。由于澆口尺寸大,熔體壓力損失小,流動 阻力小,進(jìn)料快,容易成型,適用于任何塑料。因流程短,壓力傳遞好,熔體從上 端流向分型面(底端) ,有利于排氣和消除熔接痕。 由直澆口的特點(加工薄壁塑件時,澆品根部的直徑最多等于塑件壁厚的兩倍) 確定澆品根部直徑為 m5?。 主流道的一端常設(shè)計成帶凸臺的圓盤,其高度為 5~10mm,這里定為 8mm, 并與注射機(jī)固定模板的定位孔間隙配合。襯套的球形凹坑嘗試常取 3~5mm,這里 取 4mm。半錐角 ~ ,這里取 。主流道大端處應(yīng)呈圓角,其半徑常取?1??3?2 ~ ,這里取 2mm。1?r3 已知注射機(jī)相關(guān)參數(shù)如下:注射機(jī)固定模板的定位孔半徑 R=75mm,機(jī)床噴嘴 孔徑 ,噴嘴圓弧半徑 ,那么澆口套主要尺寸可計算得:,1mD?mR18? ~ , ~(2?R19)2?5.0(2?D 。如附圖 1 所示。5.3)? 在保證塑件成型良好的前提下,主流道 的長度 L 盡量短,否則將會使主流道凝料增 多,塑料耗量大,且增加壓力損失,使塑料 降溫過多而影響注射成型通常主流道長度 L 9 可小于或等于 60mm。 4.2 澆口套的設(shè)計 由于主流道要與高溫塑料及噴嘴接觸和碰撞,所以模具的主流道部分通常設(shè)計 成可拆卸更換的主流附圖 1 道襯套,以便選用優(yōu)質(zhì)鋼材(如 T8A 等)單獨加工和 熱處理(硬度為 53~57HRC) ,或用 45,50,55 等鋼表面淬火( 55HRC) 。其主? 要作用是: 第一,使模具安裝時進(jìn)入定位孔方便而在注塑機(jī)很好地定位,與注塑機(jī)噴嘴孔 吻合,并能經(jīng)受塑料的反壓力,不致被推出模具; 第二,作為澆注系統(tǒng)的主流道,將料筒內(nèi)的塑料過渡到模具內(nèi),保證料流有力 暢通地到達(dá)型腔,在注射過程中不應(yīng)有塑料溢出,同時保證主流道凝料脫出方便。 4.3 定位圈的設(shè)計 其直徑 D 為與注射機(jī)定位孔配合直徑,應(yīng)按選用注射機(jī)的定位孔走私確定。 直徑 D 一般比注射機(jī)定位孔直徑小 0.1~ 以便于安裝。定位圈一般采用 45m3.0 或 Q235 鋼。用兩個以上的 M6-M8 的內(nèi)六角螺釘固定在模板上。 第 5 章 成型零件的設(shè)計 5.1 型腔數(shù)的確定 根據(jù)制件的幾何形狀、材料、注射類型及生產(chǎn)批量通過經(jīng)驗圖確定型腔數(shù)為單 腔;為避免出現(xiàn)飛邊,要求注射壓力以及鎖模力作用在主流道中心。 5.2 成型零件的結(jié)構(gòu)設(shè)計 5.2.1 凹模(型腔)結(jié)構(gòu)設(shè)計 凹模是成形塑件外形的主要部件,結(jié)構(gòu)隨塑件的形狀和模具的加工方法而變化。 本設(shè)計中的制品形狀比較簡單,宜設(shè)計成完全整體凹模,其特點是強(qiáng)度、剛度好, 結(jié)構(gòu)簡單,牢固可靠,不易變形,成型的塑件質(zhì)量較好。 5.2.2 凸模(型芯)結(jié)構(gòu)設(shè)計 凸模是成型塑件內(nèi)形的成型零件,型芯是成型塑件上孔的成型零件,兩者并無 嚴(yán)格的區(qū)別。分析制品的形狀特點:四周均布有 4 個方孔,兩側(cè)有 48 個小孔。故 而應(yīng)設(shè)計成完全整體式凸模+ 局部鑲拼嵌入,即在大凸模上又局部鑲拼嵌入了小凸 模。48 個小孔的型芯與模板的連接方式見下圖示。 5.3 分型面的確定 10 從制品的形狀出發(fā),確定分型面主要從以下四個方面進(jìn)行考慮: 5.3.1 確保塑件表面要求:分型面應(yīng)盡可能選擇在不影響塑件外觀的部位以及 塑件外觀的要求,而且分型面處所產(chǎn)生的飛邊應(yīng)容易修整加工。 5.3.2 考慮鎖模力:盡可能減少塑件在分型面上的投影面積。模具的分型面尺 寸在保證一定的型腔不溢料邊距的情況下,應(yīng)盡可能減小分荊需接觸面積,從而可 以增加分型面的接觸應(yīng)力,防止溢料,并簡化分型面的加工。 5.3.3 考慮模板間距:該塑件的高度為 160mm,而底面橢圓尺寸為 280mm 260mm。故選擇高度方向可將模板間距減小到最小。? 5.3.4 便于排溢:為了有利于氣體的排出,分型面盡可能與料流的末端重合。 綜上四點,根據(jù)制品的形狀,應(yīng)選用單分型面,以制品的最大端面作為分型面。 如附圖 2 所示。 5.4 成型零件工作尺寸的計算 制品尺寸能否達(dá)到圖紙尺寸要求與型腔、型芯的工作尺寸的計算有很大的關(guān)系。 成型零件工作尺寸的計算有很多,這里以塑件平均收縮率為基準(zhǔn)的計算方法計算成 型零件的工作尺寸。 計算模具成型零件最基本的公式為: AQm?? 式中 ――模具成型零件在室溫(20 ) 時的尺寸( ) ;mAC?m ――塑料制品在室溫時的尺寸( ) ; ――塑料的平均收縮率,對于 ABS 為 0.5%~0.8%,這里取 0.6%Q 5.4.1 型腔內(nèi)徑尺寸的計算 模具的開腔內(nèi)徑尺寸是由制品的外徑尺寸所決定。設(shè)制品的外徑名義尺寸為 D 是最大尺寸,其公差為負(fù)偏差(如非應(yīng)進(jìn)行轉(zhuǎn)換) 。制品的平均徑向尺寸?。―- ??紤]到收縮率,其收縮量為(D- 。)2?)2?Q 設(shè)型腔內(nèi)徑名義尺寸 為最小尺寸,其公差 為正偏差,則其平均值為MDZ? + ??紤]到型腔工作過程中最大磨損量 ,取平均值為 ,則有:MZ? C2C + =(D- +(D- -Z?) ) 對于中小型制品,可取 = , = ,代入上式,得:3?6 + =(D- +(D- -M2?)2)?Q6C?? 對上式化簡可得: =D+D - - 43 因為 與其它各項相比很小,可略去,加上制造偏差,則得模具型腔內(nèi)徑2?Q 計算公式為: =(D+D - ) ( )MDQ?Z??m 11 式中 ――型腔的內(nèi)徑尺寸( ) ;MDm D――制品的最大尺寸( ) ; ――制品公差,這里取 =0.48 ;?? ――塑料的平均收縮率(%) ,這里取 =0.6%;QQ 3/4――系數(shù),可隨制品精度變化。一般取 0.5~0.8 之間。若制品偏 差大則取小值 ,若制品偏差小則取大值。這里取 0.6; ――模具制造公差,一般?。?/6~1/4) 。這里取 0.2 。Z? mm 由上式易得: 制品總長: =(280+280 -0.6 0.48) =281.4 ( ) ;MLD%6.0?2.0?2.0? 橢圓短軸長: =(205+205 -0.6 0.48) =205.9 ( ) ;?. . 橢圓長軸長: =(226+226 -0.6 0.48) =227.1 ( ) 。C. 2.02.0 同理可得如下計算公式,推導(dǎo)過程從略。 5.4.2 型腔深度尺寸的計算(凹模深度計算) ZQh????)3H1M= ( 式中 ――型腔深度尺寸( ) ;Mm ――制品高度最大尺寸( ) 。1h 其余參數(shù)同上。 代入各數(shù)據(jù)可得: =(160+160 )=160.6 ( ) 。2.0483%6.0???) 2.0?m 5.4.3 型芯徑向尺寸的計算(凸模徑向尺寸) ( )ZQDdM?)4(1???m 式中 ――型芯外徑尺寸( ) ; ――制品內(nèi)徑最小尺寸( ) 。1D 代入各數(shù)據(jù)可得: 橢圓短軸長: =(200+200 =201.5 ( ) ;Md2.0486.%.0???) 2.0?m 橢圓短軸長: =(221+221 =222.6 ( ) 。C .) . 5.4.4 型芯高度尺寸的計算 ZQHhM????)3(1 式中 ――型芯高度尺寸( ) ;Mhm ――制品深度最小尺寸( ) 。1H 代入各數(shù)據(jù)可行: =(157.5+157.5 =158.8 ( ) 。2.0483%6.0???) 2.0?m 5.5 模具型腔側(cè)壁和底板厚度的計算 塑料模在注射成型過程中,由于注射成型壓力很高,型腔內(nèi)部承受熔融塑料的 12 巨大壓力,這就要求型腔要有一定的強(qiáng)度和剛度,如果模具型腔的強(qiáng)度和剛度不足, 則會造成模具的變形和斷裂。 實踐證明,在型腔壁厚計算中,對于大尺寸型腔來說,剛度是主要矛盾,應(yīng)按 剛度計算;對于小尺寸型腔而言,因為在發(fā)生大的彈性變形以前,其內(nèi)應(yīng)力往往超 過許用應(yīng)力,所以強(qiáng)度是主要矛盾,應(yīng)按強(qiáng)度計算。但由于分界尺寸不明確,故只 好剛度、強(qiáng)度均作計算值并取其大值。 5.5.1 側(cè)壁的理論寬度計算 5.5.1.1 按剛度計算 ]7[ A 求系數(shù) c: C= 1lhf? 式中 c——系數(shù); h——凹模型腔的深度(cm) ; ——凹模型腔的寬度(cm) ;1l 注:計算 c 時,先確定 h, 的值,然后單擊 h/ 文本框,再單擊 c 文本框自1l 動通過曲線圖計算出系數(shù) c。 因為 h=15.75 cm, =22.6 cm。代入可求得 c=0.13151l B 求系數(shù) ? φ= 12lf? 式中 φ——系數(shù); ——凹模型腔短邊長度( cm) ;2l ——凹模型腔長邊長度( cm) ;1 注:計算 φ 時,先確定 , 的值,然后單擊 / 文本框,再單擊 φ 文本l22l1 框自動調(diào)用曲線圖計算出系數(shù) φ。 因為 =21.6cm; =22.6cm.。代入可求得 φ= 0.6053.2l1l C 求凹模側(cè)壁的理論寬度 b=h?3yEcph? 式中 b——凹模側(cè)壁的理論寬度(cm) ; h——凹模型腔的深度( cm) ; p——凹模型腔內(nèi)的熔體壓力( MPa) ; y——凹模長邊側(cè)壁的允許彈性變形量( cm) ; 一般塑件 y=0.005; 精密塑件 y≤塑件壁厚的成形收縮量; 尼龍塑件 y=0.0025~0.003; c——系數(shù) 13 φ——系數(shù) E——鋼材的抗拉彈性模量,一般中碳鋼 E=2.1× MPa;510 預(yù)硬化塑料模具鋼 E=2.2× 5 因為 h=15.75cm,p=30MPa,y=0.005cm。代入可求得: b=7.14cm=71.4mm 5.5.1.2 按強(qiáng)度計算 ]2[ )12(??prbP? 式中 ——凹模型腔內(nèi)孔半徑,為 110mm;r ——材料許用應(yīng)力,為 320 ;P?Ma 其余參數(shù)同上。代入計算可得:b=12.03mm。所以應(yīng)取 71.4mm。 5.5.2 型腔的理論底部厚度計算 ]2[ 5.5.2.1 按剛度計算 341758.0PEprh?? 各參數(shù)同上。代入可得:h=41.25mm。 5.5.2.2 按強(qiáng)度計算 Pr?42 各參數(shù)同上。代入可得:h=29.17mm。所以應(yīng)取 h=41.25mm,但是由于型腔還 有定模固定板支承,故其不會懸空,因而可不必取這么厚尺寸,與定模固定板聯(lián)結(jié) 總尺寸大于 41.25mm 即可。 5.6 模具鋼的選擇 5.6.1 選擇模具鋼的原則 5.6.1.1 塑件的生產(chǎn)批量 模具是高效率的生產(chǎn)工具。每一付模具的使用壽命,直接關(guān)系到制件的成本。 而每一種產(chǎn)品的預(yù)計產(chǎn)量,又因市場需求而定。 在考慮設(shè)計模具時,除了每模的型腔婁之外,就要考慮其使用壽命。最理想的 情況是當(dāng)模具壽命終了時,該產(chǎn)品正好退出市場。但這實際很難推斷,因為市場需 求是變化莫測的。 批量小,則對鋼材的要求可以低些;而批量大時,必須選擇優(yōu)質(zhì)鋼材,以延長 使用壽命而避免重復(fù)制做模具。 5.6.1.2 塑件的尺寸精度 塑件的尺寸精度,有 50%取決于模具。而模具的制造精度及耐磨損性能又決 定制件的合格率。對于要求高精度(SJ1372—78 的 3、4 級精度)以及超高精度 (SJ1372—78 的 1、2 級精度)的塑件,既使產(chǎn)量極低,也應(yīng)選用優(yōu)質(zhì)模具鋼。 5.6.1.3 制件的復(fù)雜程度 14 制件越復(fù)雜,型腔的加工就越難,因而必須選用切削性能好的鋼材。制件復(fù)雜 程度高,表現(xiàn)在制件圖樣上的尺寸數(shù)目多,加工部位多。因而加工的應(yīng)力變形必須 考慮。 5.6.1.4 制件的體積大小 制件越大,型腔的切削量也越大。用大吃刀量切削時,切削應(yīng)力也大。因而對 于大制件的模具最好選用易切鋼。制件小時,型腔體積小,所用的刀具(主要是銑 刀)強(qiáng)度低,切削量很小。選擇鋼材時應(yīng)選用質(zhì)地均勻,合金碳化物分布細(xì)而均稱 的鋼材。小模具多先作預(yù)硬化處理后加工,要考慮加工的可能性。 5.6.1.5 制件的光觀要求 塑件如為外觀裝飾件,則表面的質(zhì)量好壞能很大程度上影響產(chǎn)品的銷售,凡對 塑件外觀有嚴(yán)格要求的塑件,最好選用真空熔煉或電渣熔煉鋼,以達(dá)到最好的型腔 拋光效果。 5.6.2 本設(shè)計模具鋼的選擇 基于上述各個原則并逐次考慮之,結(jié)合制件為大批量生產(chǎn)、塑件尺寸精度要求 較高、制件形狀相對簡單、體積較大以及制件要求外觀比較光滑等特點,從經(jīng)濟(jì)性、 加工性等方面進(jìn)行綜合考慮,本設(shè)計決定選用 3Cr2Mo(P20)模具鋼。 3Cr2Mo(P20)屬預(yù)硬化鋼,為我國引進(jìn)美國通用的塑料模具鋼,預(yù)硬化后硬度 HRC36~38。用于中、小型熱塑性塑料注射模。真空熔煉的品種可以拋光成鏡面 光澤。抗拉強(qiáng)度約為 1330 。2/mN 第 6 章 合模導(dǎo)向機(jī)構(gòu)的設(shè)計 ]5[ 注射模的導(dǎo)向機(jī)構(gòu)平方根有導(dǎo)柱導(dǎo)套導(dǎo)向和錐面定位兩種類型。導(dǎo)柱導(dǎo)套導(dǎo)向 機(jī)構(gòu)用于動模和定模的開合模導(dǎo)向以及脫模機(jī)構(gòu)的運(yùn)動導(dǎo)向。因生產(chǎn)批量大,采用 導(dǎo)柱與導(dǎo)套配合的導(dǎo)向類型。 導(dǎo)柱固定孔直徑與導(dǎo)套固定孔直徑相等,便于兩孔同時加工,確保同軸度,導(dǎo) 柱采用帶儲油槽階梯形,其帶油槽便于潤滑,使用壽命長。 6.1 導(dǎo)柱直徑的計算及選用 因?qū)е璩惺軇幽5闹亓浚瑒t其直徑應(yīng)先用下式進(jìn)行估算: 436??EWLd? 式中 ——每根導(dǎo)柱承受的模板重力( ) ;WN ——模板重心距導(dǎo)柱根部的距離( ) ;Lm ——材料的彈性模量, 。而:EMPa510.2? = 4Vg? 式中 ——模具鋼的的密度,對于合金鋼 = ;? 3/9.7c 15 ——動模的近似體積( ) ;V3cm ——重力加速度, 。而gkgN/8.9? = 3221214hrlhRr????? 其中 為上半球半徑,為 100mm, 、 分別為下半部分近似圓柱體底圓半徑1r 和高,其值分別為 106mm 和 60mm, 分別為動模不參與成型部分長方體支l和21 承的長、寬和高,其值分別為 560mm,430mm 和 40mm, 分別為動模中空腔32r 圓柱體的底圓半徑和高,其值分別為 20mm 和 132mm。代入以上各數(shù)據(jù)可得: =11605004 =11605.004cm ,則V3m = = =224.6( )W410 3??g?4109.8.6059.73??N 所以 =44.6( )4 5.1.2??dm 由[1]表 5-3 選有肩導(dǎo)柱(GB4169.5-84) ,其其主要參數(shù)如下:(單位: )0.1205.102.06.9201.1025. 8,3,87,3,6, ?????? ??? LsDd 材料為 20 鋼,滲碳 0.5~0.8mm 厚淬硬到 HRC56-60。 6.2 導(dǎo)套的選用 附圖 3 附圖 4 由導(dǎo)柱的尺寸查標(biāo)準(zhǔn) GB4169.3-84,得導(dǎo)套的尺寸,選用帶頭導(dǎo)套 I 型, 其 具體參數(shù)如下:( 單位: )m 導(dǎo)套 1: 10,25,8,71,63,,50 0.01.02.0.9201.2. ???? ?????? LsDdd 導(dǎo)套 2: 38,46,,,,, 10.01.02.06.9201.105.? 第 7 章 脫模機(jī)構(gòu)的設(shè)計 ]5[ 7.1 結(jié)構(gòu)形式設(shè)計 為提高生產(chǎn)率,本設(shè)計采用機(jī)動脫模,即應(yīng)用注射機(jī)的液壓頂出裝置或機(jī)械頂 出機(jī)構(gòu),在模具開模后,通過模具中的頂出機(jī)構(gòu)將塑件從模具中脫出。本脫模機(jī)構(gòu) 采用異型頂桿、頂出固定板和頂出板組成的頂出機(jī)構(gòu)。開模時,塑件滯留于動模, 16 模具開啟后使塑件及澆品凝料滯留于帶有脫模裝置的動模上,以便模具脫模裝置在 注射機(jī)頂桿的驅(qū)動下完成脫模動作。 7.2 頂桿布置形式 頂桿的頂出位置應(yīng)該設(shè)在脫模阻力大的部位。在型芯內(nèi)部設(shè)置頂桿時,應(yīng)盡量 靠近側(cè)壁而且要均勻分布。頂桿距離側(cè)壁一般為 3mm 以上。因塑件頂部有加強(qiáng)筋, 故而應(yīng)在筋的底部增設(shè)頂桿,以防止塑件局部產(chǎn)生裂紋。 頂桿與型芯頂桿孔的配合一般為 H8/h7,配合長度一般為頂桿直徑的(1.5~2) 倍,但至少不小于 15mm。 7.3 脫模力的計算 經(jīng)過注射機(jī)的高壓注射塑料在模具內(nèi)冷卻定型,此時塑料收縮將型芯包緊,這 一包緊力是開模后塑件脫出時所必須克服的,此外還有不通孔帶來的大氣壓力,塑 料及型芯的粘附力,摩擦力及機(jī)構(gòu)本身運(yùn)行時所產(chǎn)生的摩擦阻力。開始脫模時的瞬 時阻力最大,脫模力的計算一般總是計算初始脫模力。 由 t/D=2.5/226=1/90.41/20(塑件壁厚與其內(nèi)孔直徑之比),所以應(yīng)按薄壁塑件 來計算脫模力: BKftLEQ10)1()tancos2??????? 式中 ——脫模力( N) ; ——塑料的拉伸模量,為 2000 ;EMP ——塑料成型的平均收縮率,為 0.6%;? ——塑件的壁厚 ,為 2.5m;t ——被包型芯的長度,為 157.5 ;L ——脫模斜度( ?),一般為 1~2 ?,這里取 1 ?;? f——塑料與鋼材之間的摩擦系數(shù),為 0.3; ——塑料的泊松比,對于 ABS 為 0.35;? ——由 和 決定的無因次系數(shù),約等于 1。Kf B——塑件在與開模方向垂直的平面上的投影面積( ) ,當(dāng)塑2m 件底部有通孔時,10 視為零。這里 =B238401??? 所以可得: =11981.3QN 7.4 推桿長度計算 推桿總長度: 頂 固頂動 墊凸桿 hShh???)()(21?? 式中 ——凸模的總高度,為 188 ;凸 m 17 ——動模墊板的厚度,為 80 ;動 墊hm ——頂出行程,為 175 ;頂S ——頂桿固定板的厚度,為 20頂 固1? ——富裕量,一般為(0.05~0.1) ,這里取 0.08 ;m ——頂出行程富裕量,一般為 3~6 ,這里取 4 ,以免頂出板直接頂2 到動模墊板。 代入上述各數(shù)據(jù),可得推桿總長度: =467.08 ,取 468m。桿h 7.5 推桿強(qiáng)度計算與應(yīng)力校核 ]1[ 7.5.1 圓形推桿直徑 d)(6432cmQRnl???? 式中 d——圓形推桿直徑(cm) ; ——推桿長度系數(shù) 0.7;?? ——推桿長度,為 46.8cm;l ——推桿數(shù)量,定為 4 根;n E——推桿材料的彈性模量( ) ,鋼 = ;2/cmNE710.2? ——總脫模力,為 11981.3N。Q 代入各數(shù)據(jù)可得圓形推桿直徑: =0.64cm=6.4mm。d 因推桿比較長,應(yīng)適當(dāng)增大其直徑以提高其剛度。 由[1]表 5-10 選擇推桿尺寸(GB4169.1—84)如下(單位: ):m0.205.02.013.2 468,7,,6???? ??LSD 因推桿需參與成型,故應(yīng)做成異型推桿,經(jīng)上述標(biāo)準(zhǔn)修補(bǔ)而成。 7.5.2 推桿應(yīng)力校核 sdnQ???24 式中 ?——推桿應(yīng)力( ) ;2/cmN s——推桿鋼材的屈服強(qiáng)度,對于 45 鋼, =32000 2/cmN。s 所以 = ( ),30.1043.982???? 能保證推桿的正常工作。 7.6 推板厚度計算 354.0EByQLH? 式中 H——推板厚度(cm) ; L——推桿間距,為 9.6cm; 18 Q——總脫模力,為 11981.3N; E——鋼材的彈性模量,對于 45 鋼為 E=2.1×10 N/cm72 B——推板寬度,為 36cm; y——推板允許最大變形量,為 0.005cm。 代入以上各數(shù)據(jù),可算得: H=7.615cm=76.15mm,取 80mm。 第 8 章 排溢、引氣系統(tǒng)的設(shè)計 8.1 排溢設(shè)計 模具型腔在塑料充填過程中,除了型腔內(nèi)原有的空氣外,還有塑料受熱或凝固 而產(chǎn)生的低分子揮發(fā)氣體尤其是在高速注射成型時,考慮排氣是很必要的。一般是 在塑料充填的同時,必須將氣體排出模外。否則,被壓縮的氣體所產(chǎn)生的高溫,引 起塑件局部碳化燒焦,或使塑件產(chǎn)生氣泡,或使塑件熔接不良而引起塑件強(qiáng)度降低, 甚至阻礙塑料填充等。為了使這些氣體從型腔中及時排出,可以采用開設(shè)排氣槽等 辦法。 排氣槽應(yīng)開設(shè)在型腔最后被充滿的地方。這里利用分型面的配合間隙排氣。 8.2 引氣設(shè)計 本設(shè)計制品為深腔殼形塑件,注射成型后,整個型腔由塑料填滿,型腔內(nèi)氣體被擠 出,此時塑件的包容面與型芯的被包容面基本上構(gòu)成真空。當(dāng)塑件脫模時,由于受 到大氣壓力的作用造成脫模困難,如采用強(qiáng)行脫模,勢必使塑件發(fā)生變形或損壞, 影響塑件質(zhì)量。 本設(shè)計中,除了四根頂桿的間隙可以引氣之外,在動模也有四個鑲塊(用螺釘 聯(lián)結(jié)),其間隙可作引氣之用。 第 9 章 冷卻系統(tǒng)的設(shè)計 ]3[ 一般注射到模具內(nèi)的塑料溫度為 200C 左右,而塑件固化后從模具型腔中取出時 其溫度在 600C 以下。熱塑性顏料在注射成型后,必須對模具進(jìn)行有效的冷卻,使熔 融塑料的熱量盡快傳給模具,以便使塑件可靠冷卻定型并可迅速脫模,提高塑件定型 質(zhì)量和生產(chǎn)效率。 冷卻介質(zhì)采用冷卻水,這是因為水的熱容量大,傳熱系數(shù)大,成本低,且低于室溫的 水也容易取得.用水冷卻即在模具型腔周圍或型腔內(nèi)開設(shè)冷卻水通道,利用循環(huán)水將 熱量帶走,維持恒溫。 9.1 冷卻通道的理論計算 19 9.1.1 熱量計算 模具的熱量是由輻射傳熱、對流散熱、向模板的傳熱和與注射噴嘴的傳熱等很 多因素綜合作用的結(jié)果。要精確計算是十分困難的?,F(xiàn)僅考慮冷卻介質(zhì)在管內(nèi)強(qiáng)制 對流的散熱,而忽略其它傳熱因素。假設(shè)由熔融塑料放出的熱量全部付給模具,其 熱量為 (J/h))(21TnmCQ?? 式中 ——每小時注射次數(shù)(次/小時) ; ——每次注射的塑料質(zhì)量(千克/次) ; ——塑料的比熱容(J/kg 0C),查表 8-26 可得 ABS 的比熱容是? 1047(J/kg 0C) ;? ——熔融塑料進(jìn)入模腔的溫度(0C) ;1T ——制品脫模溫度(0C) 。2 每小時注射次數(shù) 與注射周期有關(guān),而注射周期 (每兩次閉模的時間間隔)nT 包括 :]1[ )(sTTrcni?? 式中 ——充模時間,查表 5-49 得 =6.8s;i i ——升壓及保壓時間, = ,當(dāng)壁厚 s=2.5mm 時,代入n nT)2(3.0s? 可得 =4.5s;n ——冷卻時間,對于 ABS 塑料,查表 5-51 得壁厚為 2.5mm 時Tc =13.7s;Tc ——其余時間,包括脫模取件及開閉模時間。這一段時間基本上r 與模內(nèi)塑件的冷卻無甚關(guān)系。因而 時間不能固定,與人為因素有關(guān)系,所以計Tr 算冷卻系統(tǒng)時,可不考慮 。 代入上述數(shù)據(jù)可計算得: )(25sT? 所以可得每小時注射次數(shù)為: ,查 可得其余各項值n)(1460次??T]1[ 如下: =316.3 千克/每次, =1900C , =550C。m310??12 所以可得: 6437868.98(J/h)????)590(47.643Q 9.1.2 冷卻水量和管徑的計算 冷卻時所需要的冷卻水量: )(43TM?? 式中 ——通過模具的冷卻水質(zhì)量( ) ;kg 20 ——出水溫度(0C) ,這時定為 400C;3T ——進(jìn)水溫度(0C) ,這里定為室溫 200C;4 ——導(dǎo)熱系數(shù)(J/ 0C) ,查 表 8-26 可得 ABS 的導(dǎo)熱系數(shù)為 1055 ??m]3[ J/ 0C。?m 代入各數(shù)據(jù)可得: = ( )M1.305)24(10598.637???kg 根據(jù)冷卻水處于湍流狀態(tài)下的流速 與水管道直徑 的關(guān)系,確定模具模具冷vd 卻水管道直徑 。d 因為 Md???24 故有 )(103mv? 式中 ——通過模具的冷卻水質(zhì)量( ) ;kg ——管道內(nèi)冷卻水的流速,一般取 0.8~2.5m/s,這里取 1.5m/s;v ——水的密度,10 。?33/ 所以可得: = ,這時取 =15 。d)(0.165.14303m??dm 第 10 章 側(cè)向分型與抽芯機(jī)構(gòu)設(shè)計 ]5[ 因制品兩側(cè)有小孔,模具上成型該處的型芯必須制成可側(cè)向移動的活動型芯, 在塑件脫模前先將活動型芯抽出,否則就無法脫模。 10.1 側(cè)向分型與抽芯機(jī)構(gòu)的選用 為提高生產(chǎn)率,選用機(jī)動側(cè)向分型與抽芯機(jī)構(gòu),利用注射機(jī)開模力作為動力, 通過斜導(dǎo)槽、滾筒和滑塊等零件,使力作用于側(cè)向成型零件而把活動型芯從塑料制 品中抽出,合模時又靠它使側(cè)向成型零件復(fù)位。 10.2 抽心距的計算 抽芯距是指側(cè)型芯從成型位置抽到不妨礙塑件取出位置時,側(cè)型芯在抽撥方向 所移動的距離。抽芯距一般應(yīng)大于塑件的側(cè)孔深度 2~3mm。 +(2~3 )( )hs?m 式中 ——抽芯距( ) ;sm ——塑件側(cè)孔深度,為 2.5 。h 所以可得: =2.5+2.5=5( )。s 10.3 抽芯機(jī)構(gòu)各尺寸的確定 21 ?cosin/HL?式中 ——斜導(dǎo)槽的工作長度( ) ;m ——抽芯距,由上知 =5 ;s ——斜導(dǎo)槽的傾斜角,實踐證明 取 22 最為理想;?'3? ——與抽芯距 對應(yīng)的開模距( ) 。 代入上述各數(shù)據(jù)可得: =13 , =12 。LmH 10.4 抽芯力及抽芯所需開模力的計算 10.4.1 抽芯力的計算 )sinco(???uhpFc 式中 ——抽芯力( ) ;N ——側(cè)型芯成型部分的截面平均周長,為 5 ;310??m ——側(cè)型芯成型部分的高度,為 2.5 ; ——塑件對側(cè)型芯的收縮應(yīng)力(包緊力) ,其值與塑件的幾何形狀及塑料的p 品種、成型工藝有關(guān),一般情況下模內(nèi)冷卻的塑件 =(0.8~1.2) ,取 1pPa70? 。Pa710? ——塑料在熱狀態(tài)時對鋼的摩擦系數(shù),一般 =0.15~0.2,取 =0.18。u uu ——側(cè)型芯的脫模斜度,取 =???1 代入以上各數(shù)據(jù)可得: =20.32 。cFN 兩側(cè)共有 48 個小孔,故其總需抽芯力為: 4.975832.0???c總 10.4.2 抽芯所需開模力的計算 ?tanosktwF 式中 ——側(cè)抽芯時斜導(dǎo)槽所受的彎曲力( ) ;w N ——側(cè)抽芯時的脫模力, = ( ) ;t tF總c ——側(cè)抽芯時所需的開模力( ) 。k 所以可得: =530 , =400 。wFNk 由計算可知抽芯時所需的開模力并不大,斜導(dǎo)槽所受的彎曲力也很少。故而斜 導(dǎo)槽的尺寸可按模具的結(jié)構(gòu)取一合理值即可。 10.5 型芯結(jié)構(gòu)布置設(shè)計及其它部件選 材 22 型芯結(jié)構(gòu)布置如附圖 5 所示。組成斜導(dǎo)槽的零件對硬度和耐磨性都有一定的要 求,一般情況下。常用材料為 45 鋼。為了便于加工和防止熱變形,常常調(diào)質(zhì)至 28—32HRC 后銑削成形。蓋板的材料用 T8 鋼,要求硬 C 50。斜導(dǎo)槽與滑塊配合? 部分的表面要求較高,表面粗糙度 。 附圖 5 mRa?8.0? 第 11 章 模架選擇 根據(jù)制品的大小、型腔的布局和模具的總體的結(jié)構(gòu),可知應(yīng)選用標(biāo)準(zhǔn)模架 (GB/T12556.1~12556.2-90)型,其其標(biāo)記為:3A A3—560*630—20—Z2—GB/T12556—1990 但由于制品深度太大,且?guī)в袀?cè)抽芯機(jī)構(gòu),故無法完全按其標(biāo)準(zhǔn),只好依次選 用標(biāo)準(zhǔn)模板。各標(biāo)準(zhǔn)零件標(biāo)記如下: 定模座板:模板 630 560 50 GB/T4169.8—84,材料:45 鋼 GB/T 699—? 1999; 動模座板:模板 630 560 50 GB/T4169.8—84,材料:45 鋼 GB/T 699— 1999; 墊塊:100 560 200 GB/T 4169.6—1984,材料: Q235A 鋼 GB/T 700—? 1988; 推板:360 560 25 GB/T 4169.7—1984,材料:45 鋼 GB/T 699—1999; 限位釘 8 GB/T 4169.9-1984,材料:45 鋼 GB/T 699-1999。 第 12 章 模腔三維造型 CAD/CAM 12.1 構(gòu)建零件實體造型 分析制品的零件圖可知,安全帽主要由帽體和帽檐兩大部分組成。而帽體主要 由一個長半軸為 113mm,短半軸為 108mm 的半橢圓腔加上一個高為 60 的圓臺空 腔構(gòu)成,其中帽的頂部有三條加強(qiáng)肋,側(cè)面有六塊加強(qiáng)板肋,前后各有 24 個小孔。 使用 CAXA 制造工程師構(gòu)建零件實體主要過程如下: 旋轉(zhuǎn)增料完成帽腔(只有外 腔,內(nèi)腔有待抽殼完成)部分 ,同樣采用旋轉(zhuǎn)增料工具生成帽檐部分,只是此時草圖繪 制的平面須與前面作草圖的平面垂直,同時使用截剪 命令得到帽舌形狀。然后新建兩個平面,通過拉伸增 料在此二新建平面完成帽頂三條加強(qiáng)肋。同理可得 到帽側(cè)身的六塊加強(qiáng)板肋。最后再應(yīng)用拉伸除料可 得到帽前后的通孔。直至此,安全帽實體就基本上完 成構(gòu)建了。如附圖 6,附圖 7 所示。 23 附圖 6:安全帽背面 附圖 7:安全帽正 面 12.2 模腔分模 分型面取在零件的最大截面處。首先應(yīng)將側(cè)孔用曲面擋住。然后在 CAXA 制 造工程師中應(yīng)用“型腔”命令并取 X 軸正負(fù)方向型腔壁厚均為 150 ,Y 軸正負(fù)m 方向型腔壁厚分別取為 135 、145 ,Z 軸正負(fù)方向型腔壁厚分別取為m 45 ,40 。最后在其中一側(cè)面繪制一個草圖(沿著帽的底邊投影線) ,應(yīng)用m “分?!泵睿謩e選取開模方向即可得上下型腔。如附圖 8,附圖 9 所示。 附圖 8:模腔凹模 附圖 9:型腔凸模 12.3 模腔模擬加工 本設(shè)計主要對凹模進(jìn)行銑削仿真加工。 零件的加工一般分為粗加工、半精加工和精加工三個階段進(jìn)行。由于本設(shè)計零 件表面及尺寸均要求不高,故這里只進(jìn)行粗加工和精加工兩部分。保證表面粗糙度 Ra3.2,精度要求為 8 級。 12.3.1 零件的粗加工 24 本設(shè)計中的模腔凹模特點為深又大,故粗加工的目的是切除大部分的材料,刀 具受力必然很大,因而需選用直徑較大的刀具。這里選用 的球銑刀。20? 12.3.2 零件的精加工 精加工的目的是保證精度,因此,精加工切削余量小,刀具的直徑須選用較小 值,這里選用 球銑刀。8? 仿真加工后零件如附圖 10 所示。 附圖 10:模腔加工 12.4 生成 NC 文件 在 CAXA 制造工程師中直接點擊:應(yīng)用?后置處理?生成 G 代碼。即可得可 直接用于機(jī)床上的 NC 文件。 25 鳴 謝 首先,衷心感謝趙侖老師和劉璨老師在畢業(yè)設(shè)計全過程對本人的悉心指導(dǎo)! 足足一個半月幾乎日夜忙碌的畢業(yè)設(shè)計工作直至今天終于接近尾聲了。在這漫 長而又短暫的 45 天里,本人絲毫不敢放松自己的設(shè)計工作:從資料收集到模具總 體結(jié)構(gòu)方案的擬定,從模具具體數(shù)據(jù)的設(shè)計計算到設(shè)計模具總體裝配圖以及零件圖 的繪制,從三維輔助設(shè)計軟件進(jìn)行產(chǎn)品零件設(shè)計到模具的分模、型腔的仿真加工以 及生成 NC 文件等全過程本人都盡力而為之,力求做得最好! 通過本次畢業(yè)設(shè)計,本人深刻領(lǐng)會到學(xué)以致用的樂趣。畢業(yè)設(shè)計好比一個大熔 爐,它熔煉了幾乎大學(xué)期間所有的基礎(chǔ)知識。使本人在重溫以前學(xué)過的基本知識的 同時,鞏固了本身的技能,更開闊了本人的視野。因為設(shè)計的需要,在查閱大量的 設(shè)計資料與手冊、雜志讀本的同時,本人深感自己專業(yè)知識的膚淺與狹窄,不但深 知“革命尚未成功,同志仍需努力” ,自己更暗下決心:一定要不斷學(xué)習(xí)前進(jìn),超 越自我! 在本次畢業(yè)設(shè)計期間,本人大膽使用現(xiàn)代設(shè)計制造技術(shù)方法,特別是計算機(jī)輔 助設(shè)計技術(shù),除了運(yùn)用 CAD/CAM 技術(shù),本人還直接使用軟件版設(shè)計手冊進(jìn)行資 料的查閱與結(jié)構(gòu)設(shè)計等工作,既保證了設(shè)計的準(zhǔn)備性,又提高了設(shè)計效率,更保證 了資料的前衛(wèi)性。 由于本人知識水平有限,在設(shè)計過程中難免有不足甚至錯誤的地方,希望老師 和同學(xué)能給我提出批評和建議!多謝指教! 最后,再次衷心感謝 XX 老師和 XX 老師在畢業(yè)設(shè)計全過程對本人的悉心指導(dǎo)! 26 Xxx 日期: 參考文獻(xiàn) [1] 《塑料模具設(shè)計手冊》編寫組.模具手冊之二塑料模具設(shè)計手冊(第 2 版) [M].北京:機(jī)械工業(yè)出版社,2001.2 [2] 陳萬林等 .實用塑料注射模設(shè)計與制造[M].北京:機(jī)械工業(yè)出版社,2000 [3] 黨根茂,駱志斌,李集仁.模具設(shè)計與制造[M].陜西:西安電子科技大學(xué) 出版社,1995.12 [4] 付宏生,劉京華.注塑制品與注塑模具設(shè)計[M].北京:化學(xué)工業(yè)出版社, 2003.7 [5] 模具實用技術(shù)編委會.塑料模具設(shè)計制造與應(yīng)用實例[M],第一版.北京: 機(jī)械工業(yè)出版社,2002.7 [6] 許發(fā)樾. 實用模具設(shè)計與制造手冊[S].北京:機(jī)械工業(yè)出版社, 2000.10 [7] 《塑料模具設(shè)計手冊》編委會.陜西科技大學(xué)計算機(jī)與信息工程學(xué)院開發(fā),塑 料模設(shè)計手冊(軟件版)V1.0. 北京:機(jī)械工業(yè)出版社 ,2004.6 [8] 阮鋒,黃珍媛,劉偉強(qiáng).Pro/ENGINEER 2001 模具設(shè)計與制造實用教程.北 京:機(jī)械工業(yè)出版社,2003.3 [9] 朱龍根. 簡明機(jī)械零件設(shè)計手冊[S].北京:機(jī)械工業(yè)出版社, 1997.11 [10] 華南理工大學(xué) 黃毅宏,上海交通大學(xué) 李明輝.模具制造工藝[M].北京: 機(jī)械工業(yè)出版社,1999.6 [11] 夏巨諶,李志剛,中國模具設(shè)計大典 數(shù)據(jù)庫(電子版).中國機(jī)械工程學(xué)會 中國模具設(shè)計大典組委會 2003.9
收藏