高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題4 三角函數(shù)與平面向量 第20練 關于平面向量數(shù)量積運算的三類經(jīng)典題型 文
《高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題4 三角函數(shù)與平面向量 第20練 關于平面向量數(shù)量積運算的三類經(jīng)典題型 文》由會員分享,可在線閱讀,更多相關《高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題4 三角函數(shù)與平面向量 第20練 關于平面向量數(shù)量積運算的三類經(jīng)典題型 文(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第20練 關于平面向量數(shù)量積運算的三類經(jīng)典題型 [題型分析高考展望] 平面向量數(shù)量積的運算是平面向量的一種重要運算,應用十分廣泛,對向量本身,通過數(shù)量積運算可以解決位置關系的判定、夾角、模等問題,另外還可以解決平面幾何、立體幾何中許多有關問題,因此是高考必考內(nèi)容,題型有選擇題、填空題,也在解答題中出現(xiàn),常與其他知識結(jié)合,進行綜合考查. 體驗高考 1.(2015山東)已知菱形ABCD的邊長為a,∠ABC=60 ,則等于( ) A.-a2 B.-a2 C.a2 D.a2 答案 D 解析 如圖所示, 由題意,得BC=a, CD=a,∠BCD=120. BD2=BC2+CD2-2BCCDcos 120 =a2+a2-2aa=3a2, ∴BD=a.∴ =||||cos 30=a2=a2. 2.(2015重慶)若非零向量a,b滿足|a|=|b|,且(a-b)⊥(3a+2b),則a與b的夾角為( ) A. B. C. D.π 答案 A 解析 由(a-b)⊥(3a+2b)得(a-b)(3a+2b)=0,即3a2-ab-2b2=0.又∵|a|=|b|,設〈a,b〉=θ, 即3|a|2-|a||b|cos θ-2|b|2=0, ∴|b|2-|b|2cos θ-2|b|2=0, ∴cos θ=.又∵0≤θ≤π,∴θ=. 3.(2015陜西)對任意向量a,b,下列關系式中不恒成立的是( ) A.|ab|≤|a||b| B.|a-b|≤||a|-|b|| C.(a+b)2=|a+b|2 D.(a+b)(a-b)=a2-b2 答案 B 解析 對于A,由|ab|=||a||b|cosa,b|≤|a||b|恒成立;對于B,當a,b均為非零向量且方向相反時不成立;對于C、D容易判斷恒成立.故選B. 4.(2016課標全國乙)設向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,則m=________. 答案?。? 解析 由|a+b|2=|a|2+|b|2,得a⊥b,所以m1+12=0,得m=-2. 5.(2016上海)在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線y=上一個動點,則的取值范圍是________. 答案 [0,1+] 解析 由題意知y=表示以原點為圓心, 半徑為1的上半圓. 設P(cos α,sin α),α∈[0,π],=(1,1), =(cos α,sin α+1) 所以=cos α+sin α+1 =sin(α+)+1∈[0,1+] 的范圍為[0,1+]. 高考必會題型 題型一 平面向量數(shù)量積的基本運算 例1 (1)(2015四川)設四邊形ABCD為平行四邊形,||=6,||=4,若點M,N滿足=3,=2,則等于( ) A.20 B. 15 C.9 D.6 (2)(2015福建)已知⊥,||=,||=t,若點P是△ABC所在平面內(nèi)的一點,且=+,則的最大值等于( ) A.13 B.15 C.19 D.21 答案 (1)C (2)A 解析 (1)=+,=- =-+, ∴=(4+3)(4-3) =(162-92)=(1662-942)=9, 故選C. (2)建立如圖所示坐標系,則 B,C(0,t),=, =(0,t), =+=t+ (0,t)=(1,4), ∴P(1,4),=(-1,t-4) =17-≤17-2=13,故選A. 點評 (1)平面向量數(shù)量積的運算有兩種形式:一是依據(jù)長度和夾角,二是利用坐標運算,具體應用哪種形式由已知條件的特征來選擇.注意兩向量a,b的數(shù)量積ab與代數(shù)中a,b的乘積寫法不同,不應該漏掉其中的“”. (2)向量的數(shù)量積運算需要注意的問題:ab=0時得不到a=0或b=0,根據(jù)平面向量數(shù)量積的性質(zhì)有|a|2=a2,但|ab|≤|a||b|. 變式訓練1 在△ABC中,AD⊥AB,=2,||=1,則等于( ) A.2 B. C. D. 答案 A 解析 在△ABC中,=2, 所以=(+) =(+2), 又因為=-, 所以=[(1-2)+2] =(1-2)+2 =(1-2)+22, 因為AD⊥AB,所以⊥,所以=0, 所以=(1-2)0+21=2,故選A. 題型二 利用平面向量數(shù)量積求兩向量夾角 例2 (1)設a,b為非零向量,|b|=2|a|,兩組向量x1,x2,x3,x4和y1,y2,y3,y4均由2個a和2個b排列而成.若x1y1+x2y2+x3y3+x4y4的所有可能取值中的最小值為4|a|2,則a與b的夾角為( ) A. B. C. D.0 (2)已知向量a,b滿足|a|=2|b|≠0,且關于x的函數(shù)f(x)=-2x3+3|a|x2+6abx+5在R上單調(diào)遞減,則向量a,b的夾角的取值范圍是( ) A. B. C. D. 答案 (1)B (2)D 解析 (1)設a與b的夾角為θ,由于xi,yi(i=1,2,3,4)均由2個a和2個b排列而成,記S=(xiyi),則S有以下三種情況: ①S=2a2+2b2;②S=4ab;③S=|a|2+2ab+|b|2. ∵|b|=2|a|,∴①中S=10|a|2,②中S=8|a|2cos θ,③中S=5|a|2+4|a|2cos θ. 易知②最小,即8|a|2cos θ=4|a|2,∴cos θ=, 又0≤θ≤π,∴θ=,故選B. (2)設向量a,b的夾角為θ,因為f(x)=-2x3+3|a|x2+6abx+5,所以f′(x)=-6x2+6|a|x+6ab,又函數(shù)f(x)在R上單調(diào)遞減,所以f′(x)≤0在R上恒成立,所以Δ=36|a|2-4(-6)(6ab)≤0,解得ab≤-|a|2,因為ab=|a||b|cos θ,且|a|=2|b|≠0,所以|a||b|cos θ=|a|2cos θ≤-|a|2,解得cos θ≤-,因為θ∈[0,π],所以向量a,b的夾角θ的取值范圍是,故選D. 點評 求向量的夾角時要注意:(1)向量的數(shù)量積不滿足結(jié)合律.(2)數(shù)量積大于0說明不共線的兩向量的夾角為銳角,數(shù)量積等于0說明兩向量的夾角為直角,數(shù)量積小于0且兩向量不能共線時,兩向量的夾角為鈍角. 變式訓練2 若非零向量a,b滿足|a|=|b|,(2a+b)b=0,則a與b的夾角為( ) A.30 B.60 C.120 D.150 答案 C 解析 設a與b的夾角為θ, 由題意得|a|=|b|,(2a+b)b=0,可得2ab+b2=2|a||b|cos θ+b2=2|a||a|cos θ+|a|2=0,解得cos θ=-,因為0≤θ≤180,所以θ=120,故選C. 題型三 利用數(shù)量積求向量的模 例3 (1)已知向量a,b的夾角為45,且|a|=1,|2a-b|=,則|b|=____________. (2)已知直角梯形ABCD中,AD∥BC,∠ADC=90,AD=2,BC=1,點P是腰DC上的動點,則|+3|的最小值為________. 答案 (1)3 (2)5 解析 (1)由|2a-b|=,則|2a-b|2=10,及4a2-4ab+b2=10,又向量a,b的夾角為45,且|a|=1,所以41-41|b|cos +|b|2=10,即|b|2-2|b|-6=0,解得|b|=3. (2)方法一 以點D為原點,分別以DA、DC所在直線為x、y軸,建立如圖所示的平面直角坐標系,設DC=a,DP=x. ∴D(0,0),A(2,0),C(0,a),B(1,a),P(0,x),=(2,-x),=(1,a-x), ∴+3=(5,3a-4x), |+3|2=25+(3a-4x)2≥25, ∴|+3|的最小值為5. 方法二 設=x(0<x<1), ∴=(1-x),=-=-x, =+=(1-x)+, ∴+3=+(3-4x), |+3|2=2+2(3-4x)+(3-4x)2=25+(3-4x)22≥25, ∴|+3|的最小值為5. 點評 (1)把幾何圖形放在適當?shù)淖鴺讼抵?,給有關向量賦以具體的坐標求向量的模,如向量a=(x,y),求向量a的模只需利用公式|a|=即可求解. (2)向量不放在坐標系中研究,求解此類問題的方法是利用向量的運算法則及其幾何意義或應用向量的數(shù)量積公式,關鍵是會把向量a的模進行如下轉(zhuǎn)化:|a|=. 變式訓練3 已知向量a,b,c滿足|a|=4,|b|=2,a與b的夾角為,(c-a)(c-a)=-1,則|c-a|的最大值為( ) A.+ B.+1 C. D.+1 答案 D 解析 在平面直角坐標系中,取B(2,0),A(2,2),則=a,=b,設c==(x,y), 則(c-a)(c-b)=(x-2,y-2)(x-2,y) =(x-2)2+y(y-2)=-1, 即(x-2)2+(y-)2=1, 所以點C(x,y)在以D(2,)為圓心,1為半徑的圓上,|c-a|=, 最大值為|AD|+1=+1.故選D. 高考題型精練 1.已知空間四邊形ABCD的每條邊和對角線的長都為1,點E、F分別是AB、AD的中點,則等于( ) A. B. C.- D.- 答案 D 解析 由題四邊形ABCD的邊和對角線的長都為1,點E、F分別是AB、AD的中點,則EF平行于BD,則==11cos 120=-. 2.(2016課標全國丙)已知向量=,=,則∠ABC等于( ) A.30 B.45 C.60 D.120 答案 A 解析 ||=1,||=1, cos∠ABC==. 又∵0≤∠ABC≤180, ∴∠ABC=30. 3.(2015湖南)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC.若點P的坐標為(2,0),則|++|的最大值為( ) A.6 B.7 C.8 D.9 答案 B 解析 由A,B,C在圓x2+y2=1上,且AB⊥BC, ∴AC為圓的直徑, 故+=2=(-4,0), 設B(x,y), 則x2+y2=1且x∈[-1,1],=(x-2,y), 所以++=(x-6,y). 故|++|=,-1≤x≤1, ∴當x=-1時有最大值=7, 故選B. 4.已知三點A(-1,-1)、B(3,1)、C(1,4),則向量在向量方向上的投影為( ) A. B.- C. D.- 答案 A 解析?。?-2,3),=(-4,-2),向量在向量方向上的投影為==,故選A. 5.(2015安徽)△ABC是邊長為2的等邊三角形,已知向量a,b滿足=2a,=2a+b,則下列結(jié)論正確的是( ) A.|b|=1 B.a(chǎn)⊥b C.a(chǎn)b=1 D.(4a+b)⊥ 答案 D 解析 在△ABC中, 由=-=2a+b-2a=b, 得|b|=2. 又|a|=1,所以ab=|a||b|cos 120=-1, 所以(4a+b)=(4a+b)b=4ab+|b|2 =4(-1)+4=0, 所以(4a+b)⊥,故選D. 6.已知i,j為互相垂直的單位向量,a=i-2j,b=i+λj,且a,b的夾角為銳角,則實數(shù)λ的取值范圍是( ) A.(-∞,) B.(,+∞) C.(-2,)∪(,+∞) D.(-∞,-2)∪(-2,) 答案 D 解析 ∵a,b的夾角為銳角, ∴ab=11+(-2)λ>0且1(-2)-1λ≠0, ∴λ∈(-∞,-2)∪(-2,),故選D. 7.已知向量a,b,其中|a|=,|b|=2,且(a+b)⊥a,則向量a和b的夾角是________. 答案 解析 ∵(a+b)⊥a, ∴(a+b)a=a2+ab=3+2cos〈a,b〉=0, cos〈a,b〉=-,又0≤〈a,b〉≤π, ∴a和b的夾角為. 8.(2016浙江)已知向量a,b,|a|=1,|b|=2.若對任意單位向量e,均有|ae|+|be|≤,則ab的最大值是________. 答案 解析 由已知可得, ≥|ae|+|be|≥|ae+be| =|(a+b)e|, 由于上式對任意單位向量e都成立. ∴≥|a+b|成立. ∴6≥(a+b)2=a2+b2+2ab =12+22+2ab. 即6≥5+2ab, ∴ab≤. 9.如圖,在△ABC中,點O為BC的中點,若AB=1,AC=3,〈,〉=60,則||=________. 答案 解析 因為〈,〉=60, 所以=||||cos 60 =13=, 又=(+), 所以2=(+)2 =(2+2+2), 即2=(1+3+9)=, 所以||=. 10.(2016湖南衡陽八中第六次月考)已知點O是銳角△ABC的外心,AB=8,AC=12,A=.若=x+y,則6x+9y=________. 答案 5 解析 如圖,設點O在AB,AC上的射影分別是點D,E,它們分別為AB,AC的中點, 連接OD,OE. 由數(shù)量積的幾何意義, 可得=||||=32,=||||=72, 依題意有 =x2+y =64x+48y=32, 即4x+3y=2, =x+y2 =48x+144y=72, 即2x+6y=3, 將兩式相加可得6x+9y=5. 11.設a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c. (1)求b和c; (2)求c在a方向上的投影; (3)求λ1和λ2,使c=λ1a+λ2b. 解 (1)∵b∥d, ∴6x-24=0,∴x=4. ∵4a+d=(4,10),(4a+d)⊥c, ∴54+10y=0,y=-2, ∴b=(4,3),c=(5,-2). (2)cos〈a,c〉===-, ∴c在a方向上的投影為|c|cos〈a,c〉=-. (3)∵c=λ1a+λ2b, ∴ 解得λ1=-,λ2=. 12.(2016黃岡模擬)在△ABC中,AC=10,過頂點C作AB的垂線,垂足為D,AD=5,且滿足=. (1)求|-|; (2)存在實數(shù)t≥1,使得向量x=+t,y=t+,令k=xy,求k的最小值. 解 (1)由=,且A,B,D三點共線, 可知||=||. 又AD=5,所以DB=11. 在Rt△ADC中, CD2=AC2-AD2=75, 在Rt△BDC中, BC2=DB2+CD2=196, 所以BC=14. 所以|-|=||=14. (2)由(1),知||=16,||=10,||=14. 由余弦定理, 得cos A==. 由x=+t,y=t+, 知k=xy =(+t)(t+) =t||2+(t2+1)+t||2 =256t+(t2+1)1610+100t =80t2+356t+80. 由二次函數(shù)的圖象,可知該函數(shù)在[1,+∞)上單調(diào)遞增, 所以當t=1時,k取得最小值516.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題4 三角函數(shù)與平面向量 第20練 關于平面向量數(shù)量積運算的三類經(jīng)典題型 高考 數(shù)學 考前 知識 方法 專題 訓練 第一 部分 三角函數(shù) 平面
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.zhongcaozhi.com.cn/p-11851913.html