電控液壓傳動(dòng)試驗(yàn)系統(tǒng)設(shè)計(jì)【裝載機(jī)工作裝置】
電控液壓傳動(dòng)試驗(yàn)系統(tǒng)設(shè)計(jì)【裝載機(jī)工作裝置】,裝載機(jī)工作裝置,液壓,傳動(dòng),試驗(yàn),實(shí)驗(yàn),系統(tǒng),設(shè)計(jì),裝載,機(jī)工,裝置
畢業(yè)設(shè)計(jì)(論文)
電控液壓傳動(dòng)試驗(yàn)系統(tǒng)設(shè)計(jì)
所在學(xué)院
專 業(yè)
班 級(jí)
姓 名
學(xué) 號(hào)
指導(dǎo)老師
年 月 日
誠(chéng) 信 聲 明
本人聲明:
1、本人所呈交的畢業(yè)設(shè)計(jì)(論文)是在老師指導(dǎo)下進(jìn)行的研究工作及取得的研究成果;
2、據(jù)查證,除了文中特別加以標(biāo)注和致謝的地方外,畢業(yè)設(shè)計(jì)(論文)中不包含其他人已經(jīng)公開(kāi)發(fā)表過(guò)的研究成果,也不包含為獲得其他教育機(jī)構(gòu)的學(xué)位而使用過(guò)的材料;
3、我承諾,本人提交的畢業(yè)設(shè)計(jì)(論文)中的所有內(nèi)容均真實(shí)、可信。
作者簽名: 日期: 年 月 日
目 錄
摘 要 V
Abstract 1
第1章 緒論 2
1.1液壓概況 2
1.2液壓工作原理 2
1.3 液壓系統(tǒng)的設(shè)計(jì)步驟與設(shè)計(jì)要求 3
1.4本論文研究的主要內(nèi)容 4
第2章 電控液壓傳動(dòng)試驗(yàn)系統(tǒng)整體方案的擬定 5
2.1 設(shè)計(jì)思路 5
2.2擬定液壓原理圖 6
2.3 動(dòng)作分析 7
第3章 電控液壓傳動(dòng)試驗(yàn)系統(tǒng)液壓系統(tǒng)的計(jì)算 9
3.1 設(shè)計(jì)主要技術(shù)參數(shù) 9
3.2 液壓缸的設(shè)計(jì) 9
3.2.1繪制液壓缸速度循環(huán)圖、負(fù)載圖 12
3.2.2 液壓缸的效率 12
3.2.3 液壓缸缸徑的計(jì)算 12
3.2.4活塞寬度的確定 13
3.2.5 缸體長(zhǎng)度的確定 13
3.2.6缸筒壁厚的計(jì)算 13
3.2.7 活塞桿強(qiáng)度和液壓缸穩(wěn)定性計(jì)算 14
3.2.8缸筒壁厚的驗(yàn)算 17
3.2.9 缸筒的加工要求 18
3.2.10法蘭設(shè)計(jì) 19
3.2.11 (缸筒端部)法蘭連接螺栓的強(qiáng)度計(jì)算 20
3.2.12密封件的選用 21
第4章 電控液壓傳動(dòng)試驗(yàn)系統(tǒng)液壓系統(tǒng)液壓元件的選擇 23
4.1油泵的選擇 23
4.1.1 油泵工作壓力的確定 23
4.1.2 油泵流量的確定 24
4.1.3 油泵電機(jī)功率的確定 24
4.2 液壓元件的選擇 25
4.3 油管的選擇 27
第5章 驗(yàn)算液壓系統(tǒng)性能 28
5.1 壓力損失的驗(yàn)算及泵壓力的調(diào)整 28
5.2 液壓系統(tǒng)的發(fā)熱和溫升驗(yàn)算 30
第6章 液壓站的設(shè)計(jì) 32
6.1液壓站簡(jiǎn)介 32
6.2 油箱設(shè)計(jì) 32
6.2.1油箱有效容積的確定 32
6.2.2 油箱容積的驗(yàn)算 33
6.2.3 油箱的結(jié)構(gòu)設(shè)計(jì) 35
6.3 液壓站的結(jié)構(gòu)設(shè)計(jì) 37
6.3.1 液壓泵的安裝方式 37
6.4 輔助元件 40
6.4.1 濾油器 40
6.4.2 空氣濾清器 41
6.4.3 液位計(jì) 42
6.4.4 液壓油 43
第7章 控制部分設(shè)計(jì) 44
7.1 可編程序控制器的選擇及工作過(guò)程 44
7.1.1 可編程序控制器的選擇 44
7.1.2 可編程序控制器的工作過(guò)程 44
7.2 可編程序控制器的使用步驟 45
7.3可編程序控制器控制方案 46
7.3.1 控制系統(tǒng)的工作原理及控制要求 46
7.3.2.控制要求 46
7.4 PLC控制原理圖設(shè)計(jì) 47
結(jié)論 49
致 謝 50
參考文獻(xiàn) 51
IV
摘 要
液壓傳動(dòng)系統(tǒng)是液壓機(jī)械的一個(gè)組成部分,液壓傳動(dòng)系統(tǒng)的設(shè)計(jì)要同主機(jī)的總體設(shè)計(jì)同時(shí)進(jìn)行。著手設(shè)計(jì)時(shí),必須從實(shí)際情況出發(fā),有機(jī)地結(jié)合各種傳動(dòng)形式,充分發(fā)揮液壓傳動(dòng)的優(yōu)點(diǎn),力求設(shè)計(jì)出結(jié)構(gòu)簡(jiǎn)單、工作可靠、成本低、效率高、操作簡(jiǎn)單、維修方便的液壓傳動(dòng)系統(tǒng)。
本人系統(tǒng)學(xué)習(xí)了液壓系統(tǒng)技術(shù)的知識(shí),查閱了一些相關(guān)的文獻(xiàn)資料,在此基礎(chǔ)上,結(jié)合本人的設(shè)想和設(shè)計(jì)工作中需要解決的任務(wù),主要進(jìn)行了以下幾項(xiàng)工作:
(1)擬定電控液壓傳動(dòng)試驗(yàn)系統(tǒng)液壓液壓原理圖。
(2)完成電控液壓傳動(dòng)試驗(yàn)系統(tǒng)油缸的設(shè)計(jì)。
(3)完成電控液壓傳動(dòng)試驗(yàn)系統(tǒng)液壓站的設(shè)計(jì)。
(4)對(duì)液壓系統(tǒng)進(jìn)行校核設(shè)計(jì)
(5)完成對(duì)電控液壓傳動(dòng)試驗(yàn)系統(tǒng)整體建模設(shè)計(jì)
關(guān)鍵詞:電控液壓傳動(dòng)試驗(yàn)系統(tǒng),油缸,液壓系統(tǒng)
V
Abstract
Hydraulic drive system is a part of hydraulic machinery, hydraulic transmission system design to the overall design of the same host at the same time. To design, we must proceed from the actual situation, the organic combination of various transmission forms, give full play to the advantages of hydraulic transmission, and strive to design hydraulic transmission system has the advantages of simple structure, reliable operation, low cost, high efficiency, simple operation, convenient repair.
I am learning system of hydraulic system of technical knowledge, access to some of the relevant literature, on this basis, combined with the need to address my ideas and design work, the main work is described as follows:
(1) the development of hydraulic press hydraulic principle diagram.
(2) completed the design of hydraulic cylinder.
(3) to complete the design of hydraulic station.
(4) were checked for the design of hydraulic system
(5) the completion of the hydraulic press overall three-dimensional modeling design
Keywords: hydraulic machine, hydraulic cylinder, hydraulic system
第1章 緒論
1.1液壓概況
當(dāng)前,液壓技術(shù)在實(shí)現(xiàn)高壓、高速、大功率、高效率、低噪聲、經(jīng)久耐用、高度集成化等各項(xiàng)要求方面都取得了重大的進(jìn)展,在完善比例控制、數(shù)字控制等技術(shù)上也有許多新成就。此外,在液壓元件和液壓系統(tǒng)的計(jì)算機(jī)輔助設(shè)計(jì)、計(jì)算機(jī)仿真和優(yōu)化以及微機(jī)控制等開(kāi)發(fā)性工作方面,更日益顯示出顯著的成績(jī)。從17世紀(jì)中葉巴斯卡提出靜壓傳遞原理、18世紀(jì)末英國(guó)制成世界上第一臺(tái)水壓機(jī)算起,也已有二三百年歷史了。近代液壓傳動(dòng)在工業(yè)上的真正推廣使用只是本世紀(jì)中葉以后的事,至于它和微電子技術(shù)密切結(jié)合,得以在盡可能小的空間內(nèi)傳遞出盡可能大的功率并加以精確控制,更是近10年內(nèi)出現(xiàn)的新事物。
我國(guó)的液壓工業(yè)開(kāi)始于本世紀(jì)50年代,其產(chǎn)品最初只用于機(jī)床和鍛壓設(shè)備,后來(lái)才用到拖拉機(jī)和工程機(jī)械上。自1964年從國(guó)外引進(jìn)一些液壓元件生產(chǎn)技術(shù)、同時(shí)進(jìn)行自行設(shè)計(jì)液壓產(chǎn)品以來(lái),我國(guó)的液壓件生產(chǎn)已從低壓到高壓形成系列,并在各種機(jī)械設(shè)備上得到了廣泛的使用。80年代起更加速了對(duì)西方先進(jìn)液壓產(chǎn)品和技術(shù)的有計(jì)劃引進(jìn)、消化、吸收和國(guó)產(chǎn)化工作,以確保我國(guó)的液壓技術(shù)能在產(chǎn)品質(zhì)量、經(jīng)濟(jì)效益、人才培訓(xùn)、研究開(kāi)發(fā)等各個(gè)方面全方位地趕上世界水平。
1.2液壓工作原理
驅(qū)動(dòng)的液壓系統(tǒng),它由油箱、濾油器、液壓泵、溢流閥、開(kāi)停閥、節(jié)流閥、換向閥、液壓缸以及連接這些元件的油管組成。它的工作原理:液壓泵由電動(dòng)機(jī)帶動(dòng)旋轉(zhuǎn)后,從油箱中吸油。油液經(jīng)濾油器進(jìn)入液壓泵,當(dāng)它從泵中輸出進(jìn)入壓力管后,將換向閥手柄、開(kāi)停手柄方向往內(nèi)的狀態(tài)下,通過(guò)開(kāi)停閥、節(jié)流閥、換向閥進(jìn)入液壓缸左腔,推動(dòng)活塞和工作臺(tái)向右移動(dòng)。這時(shí),液壓缸右腔的油經(jīng)換向閥和回油管排回油箱。為了克服移動(dòng)工作臺(tái)時(shí)所受到的各種阻力,液壓缸必須產(chǎn)生一個(gè)足夠大的推力,這個(gè)推力是由液壓缸中的油液壓力產(chǎn)生的。要克服的阻力越大,缸中的油液壓力越高;反之壓力就越低。輸入液壓缸的油液是通過(guò)節(jié)流閥調(diào)節(jié)的,液壓泵輸出的多余的油液須經(jīng)溢流閥和回油管排回油箱,這只有在壓力支管中的油液壓力對(duì)溢流閥鋼球的作用力等于或略大于溢流閥中彈簧的預(yù)緊力時(shí),油液才能頂開(kāi)溢流閥中的鋼球流回油箱。所以,在系統(tǒng)中液壓泵出口處的油液壓力是由溢流閥決定的,它和缸中的油液壓力不一樣大。
液壓傳動(dòng)有以下一些優(yōu)點(diǎn):
在同等的體積下,液壓裝置能比電氣裝置產(chǎn)生出更多的動(dòng)力,因?yàn)橐簤合到y(tǒng)中的壓力可以比電樞磁場(chǎng)中的磁力大出30~40倍。在同等的功率下,液壓裝置的體積小,重量輕,結(jié)構(gòu)緊湊。液壓馬達(dá)的體積和重量只有同等功率電動(dòng)機(jī)的12%左右。
液壓裝置工作比較平穩(wěn)。由于重量輕、慣性小、反應(yīng)快,液壓裝置易于實(shí)現(xiàn)快速啟動(dòng)、制動(dòng)和頻繁的換向。液壓裝置的換向頻率,在實(shí)現(xiàn)往復(fù)回轉(zhuǎn)運(yùn)動(dòng)時(shí)可達(dá)500次/min,實(shí)現(xiàn)往復(fù)直線運(yùn)動(dòng)時(shí)可達(dá)1000次/min。
液壓裝置能在大范圍內(nèi)實(shí)現(xiàn)無(wú)級(jí)調(diào)速(調(diào)速范圍可達(dá)2000),它還可以在運(yùn)行的過(guò)程中進(jìn)行調(diào)速。
液壓傳動(dòng)易于自動(dòng)化,這是因?yàn)樗鼘?duì)液體壓力、流量或流動(dòng)方向易于進(jìn)行調(diào)節(jié)或控制的緣故。當(dāng)將液壓控制和電氣控制、電子控制或氣動(dòng)控制結(jié)合起來(lái)使用時(shí),整個(gè)傳動(dòng)裝置能實(shí)現(xiàn)很復(fù)雜的順序動(dòng)作,接受遠(yuǎn)程控制。液壓裝置易于實(shí)現(xiàn)過(guò)載保護(hù)。液壓缸和液壓馬達(dá)都能長(zhǎng)期在失速狀態(tài)下工作而不會(huì)過(guò)熱,這是電氣傳動(dòng)裝置和機(jī)械傳動(dòng)裝置無(wú)法辦到的。液壓件能自行潤(rùn)滑,使用壽命較長(zhǎng)。由于液壓元件已實(shí)現(xiàn)了標(biāo)準(zhǔn)化、系列化和通用化,液壓系統(tǒng)的設(shè)計(jì)、制造和使用都比較方便。液壓元件的排列布置也具有較大的機(jī)動(dòng)性。用液壓傳動(dòng)來(lái)實(shí)現(xiàn)直線運(yùn)動(dòng)遠(yuǎn)比用機(jī)械傳動(dòng)簡(jiǎn)單。
液壓傳動(dòng)的缺點(diǎn)是:
液壓傳動(dòng)不能保證嚴(yán)格的傳動(dòng)化,這是由液壓油液的可壓縮性和泄漏等原因造成的。液壓傳動(dòng)在工作過(guò)程中常有較多的能量損失(摩擦損失、泄漏損失等),長(zhǎng)距離傳動(dòng)時(shí)更是如此。液壓傳動(dòng)對(duì)油溫變化比較敏感,它的工作穩(wěn)定性很易受到溫度的影響,因此它不宜在很高或很低的溫度條件下工作。為了減少泄漏,液壓元件在制造精度上的要求較高,因此它的造價(jià)較貴,而且對(duì)油液的污染比較敏感。液壓傳動(dòng)要求有單獨(dú)的能源。液壓傳動(dòng)出現(xiàn)故障時(shí)不易找出原因。
1.3 液壓系統(tǒng)的設(shè)計(jì)步驟與設(shè)計(jì)要求
液壓傳動(dòng)系統(tǒng)是液壓機(jī)械的一個(gè)組成部分,液壓傳動(dòng)系統(tǒng)的設(shè)計(jì)要同主機(jī)的總體設(shè)計(jì)同時(shí)進(jìn)行。著手設(shè)計(jì)時(shí),必須從實(shí)際情況出發(fā),有機(jī)地結(jié)合各種傳動(dòng)形式,充分發(fā)揮液壓傳動(dòng)的優(yōu)點(diǎn),力求設(shè)計(jì)出結(jié)構(gòu)簡(jiǎn)單、工作可靠、成本低、效率高、操作簡(jiǎn)單、維修方便的液壓傳動(dòng)系統(tǒng)。
1.4本論文研究的主要內(nèi)容
本人系統(tǒng)學(xué)習(xí)了液壓系統(tǒng)技術(shù)的知識(shí),查閱了一些相關(guān)的文獻(xiàn)資料,在此基礎(chǔ)上,結(jié)合本人的設(shè)想和設(shè)計(jì)工作中需要解決的任務(wù),主要進(jìn)行了以下幾項(xiàng)工作:
(1)擬定電控液壓傳動(dòng)試驗(yàn)系統(tǒng)液壓液壓原理圖。
(2)完成電控液壓傳動(dòng)試驗(yàn)系統(tǒng)油缸的設(shè)計(jì)。
(3)完成電控液壓傳動(dòng)試驗(yàn)系統(tǒng)液壓站的設(shè)計(jì)。
(4)對(duì)液壓系統(tǒng)進(jìn)行校核設(shè)計(jì)
51
51
第2章 電控液壓傳動(dòng)試驗(yàn)系統(tǒng)整體方案的擬定
2.1 設(shè)計(jì)思路
裝載機(jī)是一種應(yīng)用廣泛的工程機(jī)械。其工作裝置的結(jié)構(gòu)和性能直接影響工程機(jī)械整機(jī)的工作尺寸和性能參數(shù),工作裝置的合理性直接影響整機(jī)的工作效率、生產(chǎn)負(fù)荷、動(dòng)力與運(yùn)動(dòng)特性、不同工況下的作業(yè)效果、工作循環(huán)的時(shí)間、外形尺寸和發(fā)動(dòng)機(jī)功率等。
裝載機(jī)工作裝置是組成裝載機(jī)關(guān)鍵部件之一,裝載機(jī)的鏟掘和裝卸物料作業(yè)是通過(guò)其工作裝置的運(yùn)動(dòng)來(lái)實(shí)現(xiàn)的。其設(shè)計(jì)水平的高低直接影響性能的好壞,進(jìn)而影響到裝載機(jī)的工作效率和經(jīng)濟(jì)性能指標(biāo)。裝載機(jī)工作裝置由鏟斗1、連桿2、搖臂3、轉(zhuǎn)斗油缸4、動(dòng)臂5、動(dòng)臂油缸6等組成。整個(gè)工作裝置鉸接在車架上。鏟斗通過(guò)連桿和搖臂與轉(zhuǎn)斗油缸鉸接,用以裝卸物料。動(dòng)臂與車架、動(dòng)臂油缸鉸接,用以升降鏟斗。鏟斗的翻轉(zhuǎn)和動(dòng)臂的升降采用液壓操縱。
圖2-1 輪式裝載機(jī)的工作裝置
裝載機(jī)作業(yè)時(shí)工作裝置應(yīng)能保證:當(dāng)轉(zhuǎn)斗油缸閉鎖、動(dòng)臂油缸舉升或降落時(shí),連桿機(jī)構(gòu)使鏟斗上下平動(dòng)或接近平動(dòng),以免鏟斗傾斜而撒落物料;當(dāng)動(dòng)臂處于任何位置、鏟斗繞動(dòng)臂鉸點(diǎn)轉(zhuǎn)動(dòng)進(jìn)行卸料時(shí),鏟斗傾斜角不小于45°,卸料后動(dòng)臂下降時(shí)又能使鏟斗自動(dòng)放平,保證各個(gè)桿件在運(yùn)動(dòng)過(guò)程中不存在干涉。保證必要的卸載角、卸載高度和卸載距離。為避免產(chǎn)斗中的物料撒出要求產(chǎn)斗作“平移運(yùn)動(dòng)”,即需要限制產(chǎn)斗口的傾角控制在15°以內(nèi)為好。
裝載機(jī)的工作機(jī)構(gòu)屬于連桿機(jī)構(gòu),設(shè)計(jì)中要特別注意防止各個(gè)工況出項(xiàng)機(jī)構(gòu)相互干擾、“死點(diǎn)”、“自鎖”和“機(jī)構(gòu)撕裂”等現(xiàn)象,各處的轉(zhuǎn)角不得小于10°;在滿足中和工作性能的前提下,盡可能增大機(jī)構(gòu)的倍力系數(shù),減小工作機(jī)構(gòu)的前懸、長(zhǎng)度和高度,以提高裝載機(jī)載各種工況下的穩(wěn)定性和司機(jī)的視野。
2.2擬定液壓原理圖
2.3 動(dòng)作分析
工作過(guò)程
A: 啟動(dòng):電磁鐵全斷電,主泵卸荷。主泵(恒功率輸出)→電液壓換向閥9的M型中位→電液換向閥20的K型中位→T
B: 快進(jìn):液壓缸15活塞快速下行:1YA,5YA通電,電磁鐵換向閥17接通液控單向閥18的控制油路,打開(kāi)液控單向閥18,
進(jìn)油路:主泵1 →電液換向閥9 →單向閥11→上液壓缸15
回油路:液壓缸15下腔 →液控單向閥18→電液換向閥9→電液換向閥20的K型中位→T 液壓缸15活塞依靠重力快速下行:大氣壓油→吸入閥13→液壓缸15上腔的負(fù)壓空腔
C: 工進(jìn):
液壓缸15接觸工件慢速下行:(增壓下行)液壓缸活塞碰行程開(kāi)關(guān)2XK,5YA斷電,切斷經(jīng)液控單向閥18快速回油通路,上腔壓力升高,切斷(大氣壓油→吸入閥13 →上液壓缸無(wú)桿腔)吸油路。
回油路:液壓缸15下腔→順序閥16→電液換向閥9→電液換向閥20的K型中位→T
D: 保壓:液壓缸15上腔壓力升高達(dá)到預(yù)調(diào)壓力,壓力繼電器10發(fā)出信息,1YA斷電,液壓缸15進(jìn)口油路切斷,單向閥11和吸入閥13的高密封性能確保液壓缸15活塞對(duì)工件保壓。主泵(恒功率輸出)主泵→ 電液壓換向閥9的M型中位→ 電液壓換向閥20的K型位→T實(shí)現(xiàn)主泵卸荷。
E: 保壓結(jié)束,泄壓,液壓缸15回程:時(shí)間繼電器發(fā)出信息,2TA通電(1YA斷電),液壓缸15上腔壓力很高,外控順序閥14,使主泵1→電液壓換向閥9→吸入閥的控制油路由于大部分油液經(jīng)外控順序閥14流回油箱,壓力不足以立即打開(kāi)吸入閥13通油箱的通道,只能打開(kāi)吸入閥的卸荷閥13(或叫卸荷閥13的卸荷口),實(shí)現(xiàn)液壓缸15上腔(只有極少部分油液經(jīng)卸荷閥口回油箱)先卸荷,后通油箱的順序動(dòng)作,此時(shí):主泵1大部分油液→電液壓換向閥9→外控順序閥→T
F: 液壓缸15活塞快速上行: 液壓缸15上腔卸壓達(dá)到吸入閥13開(kāi)啟的壓力值時(shí),外控順序閥14關(guān)閉,切斷主泵1大部分油液→電液換向閥9→外控順序閥14→T的卸荷油路實(shí)現(xiàn):
進(jìn)油路:主泵1→電液換向閥9→液控單向閥20→液壓缸15下腔回油路:液壓缸15上腔→吸入閥13→T
G: 頂出工件:液壓缸15活塞快速上行到位,PLC發(fā)出信號(hào), 2YA斷電,電液壓換向閥9關(guān)閉,3YA通電電液壓換向閥20右位工作
進(jìn)油路:主泵1→電液壓換向閥9的M型中位→電液換向閥20→液壓缸19無(wú)桿腔
回油路:液壓缸19有桿腔→電壓換向閥20→T
H: 頂出活塞退回:3YA斷電,4YA通電,電壓換向閥20左位工作
進(jìn)油路:主泵1→電液換向閥9的M型中位→電液換向閥20→液壓缸19上腔
回油路:液壓缸19下腔→電液換向閥20→T
K: 壓邊浮動(dòng)拉伸:
薄板拉伸時(shí),要求頂出液壓缸19下腔要保持一定的壓力,以便液壓缸19活塞能隨液壓缸15活塞驅(qū)動(dòng)的動(dòng)模一起下行對(duì)薄板進(jìn)行拉伸,3YA通電,電液換向閥20右邊工作,6YA通電,電磁換向閥23工作,溢流閥24調(diào)節(jié)液壓缸19下腔油墊工作壓力。
第3章 電控液壓傳動(dòng)試驗(yàn)系統(tǒng)液壓系統(tǒng)的計(jì)算
3.1 設(shè)計(jì)主要技術(shù)參數(shù)
該試驗(yàn)系統(tǒng)主要是為了測(cè)試裝載機(jī)靜壓驅(qū)動(dòng)系統(tǒng)的性能及參數(shù)匹配情況。主要參數(shù):功率90kW,轉(zhuǎn)速2200r/min,壓力40MPa,流量200L/min。
3.2 液壓缸的設(shè)計(jì)
動(dòng)臂按縱向中心線形狀可簡(jiǎn)單的分為曲線形與直線型兩種。曲線形動(dòng)臂,一般反轉(zhuǎn)式連桿工作裝置采用較多,這種結(jié)構(gòu)形式的動(dòng)臂可以使工作裝置的分布更為合理。動(dòng)臂斷面形狀可分為單板型、雙板型、工字型和箱型數(shù)種。單板動(dòng)臂結(jié)構(gòu)簡(jiǎn)單、工藝性好、但強(qiáng)度和剛度較小,一般用在中、小型裝載機(jī)上。
由上訴原因本次設(shè)計(jì)選用動(dòng)臂的形狀結(jié)構(gòu)為:曲線單板形。
(1)動(dòng)臂參數(shù)設(shè)計(jì)
1) 動(dòng)臂鉸點(diǎn)高度
動(dòng)臂與車架鉸點(diǎn)的高度通常取
動(dòng)臂回轉(zhuǎn)角通常取 初取
2) 動(dòng)臂長(zhǎng)度
鉸點(diǎn)位置確定以后,根據(jù)以下公式可以求出動(dòng)臂的長(zhǎng)度
公式:
式中: ——鏟斗最小卸載距離,mm ;
——鏟斗回轉(zhuǎn)半徑與斗底夾角;
——鏟斗最大卸載高度時(shí)最大卸載角,通常取;
——?jiǎng)颖叟c車架鉸點(diǎn)到裝載機(jī)前面外廓水平距離,mm;
——最大卸載高度,mm;
——?jiǎng)颖叟c車架連接鉸點(diǎn)的高度,mm。
(2)動(dòng)臂油缸的位置一般有兩種方式。圖所示為舉升油缸立式布置;另一種布置方式為舉升油缸臥式布置,即當(dāng)鏟斗處于裝載位置時(shí),舉升油缸接近水平,如圖2-13所示。最近生產(chǎn)的裝載機(jī)多用后一種布置方式,它是機(jī)構(gòu)優(yōu)化設(shè)計(jì)的結(jié)果。
圖2-12 立式布置 圖2-13 臥式布置
1-動(dòng)臂 2-舉升油缸 1-動(dòng)臂 2-舉升油缸
輪式裝載機(jī)工作裝置連桿機(jī)構(gòu)的設(shè)計(jì)任務(wù)是確定各連桿的尺寸和相互的位置關(guān)系,以滿足設(shè)計(jì)任務(wù)中的規(guī)定的使用性能及經(jīng)濟(jì)技術(shù)指標(biāo)。由于連桿機(jī)構(gòu)尺寸以及銷軸位置的相互影響,連桿機(jī)構(gòu)可變性很大,同時(shí)又要受結(jié)構(gòu)限制,可變參數(shù)很多,因而無(wú)法單純采用理論計(jì)算的方法來(lái)確定,目前大多數(shù)采用圖解法并配合統(tǒng)計(jì)或類比法加以確定,本次設(shè)計(jì)采用圖解法和類比法對(duì)工作裝置加以確定。
反轉(zhuǎn)六桿機(jī)構(gòu)如圖2-14所示。它由轉(zhuǎn)斗機(jī)構(gòu)和動(dòng)臂舉升機(jī)構(gòu)兩個(gè)部分組成。
a 插入工況
b 鏟裝工況
c 最高位置工況
d 高位卸載工況
圖2-14 反轉(zhuǎn)六桿機(jī)構(gòu)簡(jiǎn)圖
轉(zhuǎn)斗機(jī)構(gòu)由轉(zhuǎn)斗油缸CD、搖臂CBE、連桿EF、鏟斗GF、動(dòng)臂GBA和機(jī)架AD六個(gè)構(gòu)件組成。實(shí)際上,它是由兩個(gè)反轉(zhuǎn)四桿機(jī)構(gòu)組成GFEB和BCDA串聯(lián)而成。當(dāng)舉升動(dòng)臂時(shí),若假定動(dòng)臂為固定桿,則可以把機(jī)架AD視為輸入桿,把鏟斗GF看成輸出桿,由于AD與GF轉(zhuǎn)向相反,所以把此機(jī)構(gòu)稱作反轉(zhuǎn)六桿機(jī)構(gòu)。
舉升油缸主要由動(dòng)臂舉升油缸HM和動(dòng)臂GBA構(gòu)成。
若把油缸分解成兩個(gè)活動(dòng)構(gòu)件和一個(gè)移動(dòng)副,則反轉(zhuǎn)六桿機(jī)構(gòu)放入活動(dòng)構(gòu)件數(shù)為n=8,運(yùn)動(dòng)低副數(shù)應(yīng)用計(jì)算機(jī)構(gòu)自由度公式,可得其自由度為2。因?yàn)橛透拙鶠檫\(yùn)動(dòng)件,所以整個(gè)機(jī)構(gòu)有確定的運(yùn)動(dòng)。
當(dāng)舉升油缸閉鎖時(shí),啟動(dòng)轉(zhuǎn)斗油缸,鏟斗將繞G點(diǎn)做定軸運(yùn)動(dòng);當(dāng)轉(zhuǎn)斗油缸閉鎖,舉升油缸動(dòng)作時(shí),鏟斗將做復(fù)合運(yùn)動(dòng),即一邊隨動(dòng)臂對(duì)A進(jìn)行牽引運(yùn)動(dòng),同時(shí)有相對(duì)動(dòng)臂繞G點(diǎn)作相對(duì)運(yùn)動(dòng)。
3.2.1繪制液壓缸速度循環(huán)圖、負(fù)載圖
1、選取參數(shù)
取動(dòng)摩擦系數(shù)fd=0.1 ,靜摩擦系數(shù)fj=0.2 ,η缸=0.95,
V快=100mm/s , V工=10mm/s,令起動(dòng)時(shí)間不超過(guò)0.2秒,
3.2.2 液壓缸的效率
液壓缸的機(jī)械效率
3.2.3 液壓缸缸徑的計(jì)算
內(nèi)徑D可按下列公式初步計(jì)算:
液壓缸的負(fù)載為推力
=463mm 式(3-1)
式中 —液壓缸實(shí)際使用推力4000(KN);
—液壓缸的總效率,一般取=07~09;計(jì)算=0.8;
—液壓缸的供油壓力,一般為系統(tǒng)壓力(MPa)
本次設(shè)計(jì)中液壓缸已知系統(tǒng)壓力=25MPa;
根據(jù)式(3-1)得到內(nèi)徑:=500mm
查缸筒內(nèi)徑系列/mm(GB/T 2348-1993)可以取為500mm。
表4.1 液壓缸內(nèi)徑系列 mm
8
10
12
16
20
25
32
40
50
63
80
100
125
160
200
250
320
400
500
活塞桿外徑:
查《液壓傳動(dòng)與控制手冊(cè)》根據(jù)桿徑比d/D,一般的選取原則是:當(dāng)活塞桿受拉時(shí),一般選取d/D=0.3-0.5,當(dāng)活塞桿受壓時(shí),一般選取d/D=0.5-0.7。本設(shè)計(jì)我選擇d/D=0.7,即d=0.55D=0.7×500=350mm。根據(jù)活塞桿直徑標(biāo)準(zhǔn)取d=360mm.
表3-1 活塞桿直徑系列
活塞桿直徑系列/mm
(GB/T 2348-1993)
4、5、6、8、10、12、16、18、20、22、25、28、32、36、40、45、50、56、63、70、80、90、100、110、125、140、160、180、200、220、250、280、320、360
3.2.4活塞寬度的確定
由于活塞在液壓力的作用下沿缸筒往復(fù)滑動(dòng),因此,它與缸筒的配合應(yīng)適當(dāng),既不能過(guò)緊,也不能間隙過(guò)大。配合過(guò)緊,不僅使最低啟動(dòng)壓力增大,降低機(jī)械效率,而且容易損壞缸筒和活塞的配合表面;間隙過(guò)大,會(huì)引起液壓缸內(nèi)部泄露,降低容積效率,使液壓缸達(dá)不到要求的設(shè)計(jì)性能。
活塞的寬度一般取=(0.6-1.0)
即=(0.6-1.0)×500=(300-500)mm
取=350mm
3.2.5 缸體長(zhǎng)度的確定
液壓缸缸體內(nèi)部的長(zhǎng)度應(yīng)等于活塞的行程與活塞寬度的和。缸體外部尺寸還要考慮到兩端端蓋的厚度,一般液壓缸缸體的長(zhǎng)度不應(yīng)大于缸體內(nèi)徑的20-30倍。
3.2.6缸筒壁厚的計(jì)算
在中、低壓系統(tǒng)中,液壓缸的壁厚基本上由結(jié)構(gòu)和工藝上的要求確定,壁厚通常都能滿足強(qiáng)度要求,一般不需要計(jì)算。但是,當(dāng)液壓缸的工作壓力較高和缸筒內(nèi)徑較大時(shí),必須進(jìn)行強(qiáng)度校核。
當(dāng)時(shí),稱為薄壁缸筒,按材料力學(xué)薄壁圓筒公式計(jì)算,計(jì)算公式為
式(3-2)
式中,—缸筒內(nèi)最高壓力;
—缸筒材料的許用壓力。=, 為材料的抗拉強(qiáng)度,n為安全系數(shù),當(dāng)時(shí),一般取。液壓缸缸筒材料采用45鋼,則抗拉強(qiáng)度:
σb=600MPa
安全系數(shù)n按《液壓傳動(dòng)與控制手冊(cè)》P243表2—10,取n=5。
則許用應(yīng)力[δ]==120MPa
當(dāng)時(shí),按式(3-3)計(jì)算
(該設(shè)計(jì)采用45鋼管) 式(3-3)
根據(jù)缸徑查手冊(cè)預(yù)取=50
此時(shí) =0.1
最高允許壓力一般是額定壓力的1.5倍,根據(jù)給定參數(shù),所以:
=251.5=37.5MP
=115
滿足要求,就取壁厚為120mm。
3.2.7 活塞桿強(qiáng)度和液壓缸穩(wěn)定性計(jì)算
A.活塞桿強(qiáng)度計(jì)算
活塞桿的直徑按下式進(jìn)行校核
式中,為活塞桿上的作用力;
· 為活塞桿材料的許用應(yīng)力,=,n一般取1.40。
(3-4)
式中 ————許用應(yīng)力;(Q235鋼的抗拉強(qiáng)度為375-500MPa,取400MPa,為位安全系數(shù)取5,即活塞桿的強(qiáng)度適中)
=63.69mm
d取360 mm大于63 mm 滿足要求.
B.液壓缸穩(wěn)定性計(jì)算
活塞桿受軸向壓縮負(fù)載時(shí),它所承受的力不能超過(guò)使它保持穩(wěn)定工作所允許的臨界負(fù)載,以免發(fā)生縱向彎曲,破壞液壓缸的正常工作。的值與活塞桿材料性質(zhì)、截面形狀、直徑和長(zhǎng)度以及液壓缸的安裝方式等因素有關(guān)。若活塞桿的長(zhǎng)徑比且桿件承受壓負(fù)載時(shí),則必須進(jìn)行液壓缸穩(wěn)定性校核?;钊麠U穩(wěn)定性的校核依下式進(jìn)行
式中,為安全系數(shù),一般取=2~4。
a.當(dāng)活塞桿的細(xì)長(zhǎng)比時(shí)
b.當(dāng)活塞桿的細(xì)長(zhǎng)比時(shí)
式中,為安裝長(zhǎng)度,其值與安裝方式有關(guān),見(jiàn)表1;為活塞桿橫截面最小回轉(zhuǎn)半徑,;為柔性系數(shù),其值見(jiàn)表3-2; 為由液壓缸支撐方式?jīng)Q定的末端系數(shù),其值見(jiàn)表1;為活塞桿材料的彈性模量,對(duì)鋼??;為活塞桿橫截面慣性矩;為活塞桿橫截面積;為由材料強(qiáng)度決定的實(shí)驗(yàn)值,為系數(shù),具體數(shù)值見(jiàn)表3-3。
表3-2液壓缸支承方式和末端系數(shù)的值
支承方式
支承說(shuō)明
末端系數(shù)
一端自由一端固定
1/4
兩端鉸接
1
一端鉸接一端固定
2
兩端固定
4
表3-3 、、的值
材料
鑄鐵
5.6
1/1600
80
鍛鐵
2.5
1/9000
110
鋼
4.9
1/5000
85
c.當(dāng)時(shí),缸已經(jīng)足夠穩(wěn)定,不需要進(jìn)行校核。
此設(shè)計(jì)安裝方式中間固定的方式,此缸已經(jīng)足夠穩(wěn)定,不需要進(jìn)行穩(wěn)定性校核。
3.2.8缸筒壁厚的驗(yàn)算
下面從以下三個(gè)方面進(jìn)行缸筒壁厚的驗(yàn)算:
A液壓缸的額定壓力值應(yīng)低于一定的極限值,保證工作安全:
式(3-4)
根據(jù)式(3-4)得到:
顯然,額定油壓==25MP,滿足條件;
B為了避免缸筒在工作時(shí)發(fā)生塑性變形,液壓缸的額定壓力值應(yīng)與塑性變形壓力有一定的比例范圍:
式(3-5)
式(3-6)
先根據(jù)式(3-6)得到:
=41.21
再將得到結(jié)果帶入(3-5)得到:
顯然,滿足條件;
C耐壓試驗(yàn)壓力,是液壓缸在檢查質(zhì)量時(shí)需承受的試驗(yàn)壓力。在規(guī)定的時(shí)間內(nèi),液壓缸在此壓力 下,全部零件不得有破壞或永久變形等異常現(xiàn)象。
各國(guó)規(guī)范多數(shù)規(guī)定:
當(dāng)額定壓力時(shí)
(MPa)
D為了確保液壓缸安全的使用,缸筒的爆裂壓力應(yīng)大于耐壓試驗(yàn)壓力:
(MPa) 式(3-7)
因?yàn)椴楸硪阎?596MPa,根據(jù)式(3-7)得到:
至于耐壓試驗(yàn)壓力應(yīng)為:
因?yàn)楸褖毫h(yuǎn)大于耐壓試驗(yàn)壓力,所以完全滿足條件。
以上所用公式中各量的意義解釋如下:
式中: —缸筒內(nèi)徑();
—缸筒外徑();
—液壓缸的額定壓力()
—液壓缸發(fā)生完全塑形變形的壓力();
—液壓缸耐壓試驗(yàn)壓力();
—缸筒發(fā)生爆破時(shí)壓力();
—缸筒材料抗拉強(qiáng)度();
—缸筒材料的屈服強(qiáng)度(;
—缸筒材料的彈性模量();
—缸筒材料的泊桑系數(shù)
鋼材:=0.3
3.2.9 缸筒的加工要求
缸筒內(nèi)徑采用H7級(jí)配合,表面粗糙度為0.16,需要進(jìn)行研磨;
熱處理:調(diào)制,HB240;
缸筒內(nèi)徑的圓度、錐度、圓柱度不大于內(nèi)徑公差之半;
剛通直線度不大于0.03mm;
油口的孔口及排氣口必須有倒角,不能有飛邊、毛刺;
在缸內(nèi)表面鍍鉻,外表面刷防腐油漆。
3.2.10法蘭設(shè)計(jì)
液壓缸的端蓋形式有很多,較為常見(jiàn)的是法蘭式端蓋。本次設(shè)計(jì)選擇法蘭式端蓋
(缸筒端部)法蘭厚度根據(jù)下式進(jìn)行計(jì)算:
式(3-8)
式中, -法蘭厚度(m);
—密封環(huán)內(nèi)經(jīng)(m);
密封環(huán)外徑(m);
系統(tǒng)工作壓力(pa);=25MPa
附加密封力(Pa);值取其材料屈服點(diǎn)353MPa;
螺釘孔分布圓直徑(m);
密封環(huán)平均直徑(m);
法蘭材料的許用應(yīng)力(Pa);[]=/n=353/5=70.6MPa
—法蘭受力總合力(m)
所以
3.2.11 (缸筒端部)法蘭連接螺栓的強(qiáng)度計(jì)算
連接圖如下:
圖3-1缸體端部法蘭用螺栓連接
1-前端蓋;2-缸筒
螺栓強(qiáng)度根據(jù)下式計(jì)算:
螺紋處的拉應(yīng)力:
(MPa) 式(3-9)
螺紋處的剪應(yīng)力
(MPa) 式(3-10)
合成應(yīng)力
(MPa) 式(3-11)
式中, —液壓缸的最大負(fù)載,=A,單桿時(shí),雙桿是
—螺紋預(yù)緊系數(shù),不變載荷=1.25~1.5,變載荷=2.5~4;
—液壓缸內(nèi)徑;
—缸體螺紋外徑;
—螺紋內(nèi)經(jīng);
—螺紋內(nèi)摩擦因數(shù),一般取=0.12;變載荷取=2.5~4;
—材料許用應(yīng)力,,為材料的屈服極限,n為安全系數(shù),一般取n=1.2~1.5;
Z—螺栓個(gè)數(shù)。
最大推力為:
使用4個(gè)螺栓緊固缸蓋,即:=4
螺紋外徑和底徑的選擇:
=10mm =8mm
系數(shù)選擇:選取=1.3=0.12
根據(jù)式(3-9)得到螺紋處的拉應(yīng)力為:
=
根據(jù)式(3-10)得到螺紋處的剪應(yīng)力為:
根據(jù)式(3-11)得到合成應(yīng)力為:
==367.6MPa
由以上運(yùn)算結(jié)果知,應(yīng)選擇螺栓等級(jí)為12.9級(jí);
查表的得:抗拉強(qiáng)度極限=1220MP;屈服極限強(qiáng)度=1100MP;
不妨取安全系數(shù)n=2
可以得到許用應(yīng)力值:[]=/n=1100/2=550MP
證明選用螺栓等級(jí)合適。
3.2.12密封件的選用
A.對(duì)密封件的要求
在液壓元件中,液壓缸的密封要求是比較高的,特別是一些特殊液壓缸,如擺動(dòng)液壓缸等。液壓缸不僅有靜密封,更多的部位是動(dòng)密封,而且工作壓力高,這就要求密封件的密封性能要好,耐磨損,對(duì)溫度的適應(yīng)范圍大,要求彈性好,永久變形小,有適當(dāng)?shù)臋C(jī)械強(qiáng)度,摩擦阻力小,容易制造和裝拆,能隨壓力的升高而提高密封能力和利于自動(dòng)補(bǔ)償磨損。密封件一般以斷面形狀分類,有O形、Y形、U形、V形和Yx形等。除O形外,其他都屬于唇形密封件。
B. O形密封圈的選用
液壓缸的靜密封部位主要有活塞內(nèi)孔與活塞桿、支撐座外圓與缸筒內(nèi)孔、端蓋與缸體端面等處。靜密封部位使用的密封件基本上都是O形密封圈。
C.動(dòng)密封部位密封圈的選用
由于O型密封圈用于往復(fù)運(yùn)動(dòng)存在起動(dòng)阻力大的缺點(diǎn),所以用于往復(fù)運(yùn)動(dòng)的密封件一般不用O形圈,而使用唇形密封圈或金屬密封圈。
液壓缸動(dòng)密封部位主要有活塞與缸筒內(nèi)孔的密封、活塞桿與支撐座(或?qū)蛱祝┑拿芊獾取?
活塞環(huán)是具有彈性的金屬密封圈,摩擦阻力小,耐高溫,使用壽命長(zhǎng),但密封性能差,內(nèi)泄漏量大,而且工藝復(fù)雜,造價(jià)高。對(duì)內(nèi)泄漏量要求不嚴(yán)而要求耐高溫的液壓缸,使用這種密封圈較合適。
V形圈的密封效果一般,密封壓力通過(guò)壓圈可以調(diào)節(jié),但摩擦阻力大,溫升嚴(yán)重。因其是成組使用,模具多,也不經(jīng)濟(jì)。對(duì)于運(yùn)動(dòng)速度不高、出力大的大直徑液壓缸,用這種密封圈較好。
U形圈雖是唇形密封圈,但安裝時(shí)需用支撐環(huán)壓住,否則就容易卷唇,而且只能在工作壓力低于10MPa時(shí)使用,對(duì)壓力高的液壓缸不適用。
比較而言,能保證密封效果,摩擦阻力小,安裝方便,制造簡(jiǎn)單經(jīng)濟(jì)的密封圈就屬Yx型密封圈了。它屬于不等高雙唇自封壓緊式密封圈 ,分軸用和孔用兩種。
綜上,所以本設(shè)計(jì)選用Yx型圈,聚氨酯和聚四氟乙烯密封材料組合使用,可以顯著提高密封性能:
a.降低摩擦阻力,無(wú)爬行現(xiàn)象;
b.具有良好的動(dòng)態(tài)和靜態(tài)密封性,耐磨損,使用壽命長(zhǎng);
c.安裝溝槽簡(jiǎn)單,拆裝簡(jiǎn)便。
這種組合的特別之處就是允許活塞外園和缸筒內(nèi)壁有較大間隙,因?yàn)榻M合式密封的密封圈能防止擠入間隙內(nèi),降低了活塞與缸筒的加工要求,密封方式圖如下:
圖3-2 密封方式圖
第4章 電控液壓傳動(dòng)試驗(yàn)系統(tǒng)液壓系統(tǒng)液壓元件的選擇
4.1油泵的選擇
4.1.1 油泵工作壓力的確定
油泵工作壓力為:
=P+∑△P 式(4-1)
可知工進(jìn)階段液壓缸壓力最大,由于在電控液壓傳動(dòng)試驗(yàn)系統(tǒng)液壓系統(tǒng)中,壓力所經(jīng)過(guò)的閥的數(shù)量不多,故壓力損失∑△P不大,參照<<液壓傳動(dòng)>>表1-10選取∑△P=0.5MP。油缸最大工作壓力P可根據(jù)表3-1取為7.1MP于是油缸工作壓力即為:
=25+0.5=25.5MPA
所選油泵的額定工作壓力應(yīng)為:
=1.25=1.25×25.5=31.875MPA
根據(jù)上面計(jì)算的壓力和流量,查產(chǎn)品樣本,選用申液SV2010-4P9P1020(29L+13.1/r)泵,額定轉(zhuǎn)速1500r/min。
4.1.2 油泵流量的確定
油泵流量為:
≥K(∑Q)=1.1×150=165L/min (4-2)
選用的油泵為YYB-BC165/48B雙聯(lián)葉片油泵
4.1.3 油泵電機(jī)功率的確定
系統(tǒng)為雙泵供油系統(tǒng),兩個(gè)泵同時(shí)向系統(tǒng)供油;工進(jìn)時(shí),小泵向系統(tǒng)供油,大泵卸載[1]。
雙聯(lián)油泵:大泵流量43升/分,小泵流量19升/分
下面分別計(jì)算所需要的電動(dòng)機(jī)功率P。
考慮到調(diào)速閥所需最小壓力差。壓力繼電器可靠動(dòng)作需要壓力差。因此工進(jìn)時(shí)小泵的出口壓力為:
。而大泵的卸載壓力取。(小泵的總效率=0.565,大泵的總效率=0.3)。
雙聯(lián)油泵:大泵流量43升/分,小泵流量19升/分
電動(dòng)機(jī)功率為:
綜合所需功率據(jù)此查樣本選用Y160ML-4-B5 15KW異步電動(dòng)機(jī),電動(dòng)機(jī)功率為15KW(躍進(jìn)廠)。
4.2 液壓元件的選擇
根據(jù)液壓閥在系統(tǒng)中的最高工作壓力與通過(guò)該閥的最大流量,可選出這些元件的型號(hào)及規(guī)格[1]。本例所有閥的額定壓力都為,額定流量根據(jù)各閥通過(guò)的流量,確定為10L/min,25L/min和63L/min三種規(guī)格,所有元件的規(guī)格型號(hào)列于表5-1中,過(guò)濾器按液壓泵額定流量的兩倍選取吸油用線隙式過(guò)濾器。
表4-1 液壓元件明細(xì)表
電動(dòng)機(jī)1
Y160ML-4-B5 15KW
臺(tái)
2
躍進(jìn)廠
液壓泵1
SV2010-4P9P1020(29L+13.1/r)
臺(tái)
2
申液
聯(lián)軸器1
臺(tái)
2
鐘形罩1
160ML-B5-SV2010-P4P9P020定制
2
鐘形罩2
Y100L-4-CBE
1
回油壓力表
YN-60 I 1.6MPa
徑向普通耐振
2
上海宜川
閥箱壓力表
YN-60 I 16MPa
徑向普通耐振
10
上海宜川
吸油過(guò)濾器
WU160-100J
1
溫州黎明
回油過(guò)濾器
RFA-160*20LY
濾芯 FAX-160*20#
1
溫州黎明
濾芯
FAX-160*20#
1
溫州黎明
壓力過(guò)濾器1
ZUI-H160*10DFP
濾芯 HDX-160*10#
1
壓力過(guò)濾器2
ZUI-H63*5DFP
濾芯 HDX-63*5#
1
溫州黎明
濾芯
HDX-160*10Q2
2
溫州黎明
空氣濾清器
EF5-65
EF4-50是94.5元
1
溫州黎明
液位計(jì)
YWZ-
2
溫州黎明
清洗蓋
YG-400F
含法蘭
2
溫州黎明
液位傳感器
YKJD24-500-300
1
溫州黎明
壓力傳感器
A-10;0...250Bar,4…20
3
威卡
高壓球閥1
YJZQ-J15N(G1/2")
24
MHA
高壓球閥2
YJZQ-J20N(G1")
4
奉化朝日
板式冷卻器
BL50C-40D
1
江陰保德
分流馬達(dá)
FD219+19-G-N
1
麥塔雷斯
蓄能器
NXQ-L2.5-10H
含安全開(kāi)關(guān)
1
朝日
蓄能器
NXQ-L16-20H
含回油開(kāi)關(guān)
1
朝日
換向閥1
4WE10E3X/AG24NZ5L
1
立新力士樂(lè)
換向閥2
4WE10J3X/AG24NZ5L
1
立新力士樂(lè)
換向閥3
4WE10EA3X/AG24NZ5L
4WE10EB3X/AG24NZ5L
1
立新力士樂(lè)
換向閥4
4WE6EB6X/AG24NZ5L
2
立新力士樂(lè)
換向閥5
4WE6E6X/AG24NZ5L
4
立新力士樂(lè)
換向閥6
4WE6C6X/EG24NZ5L
4
立新力士樂(lè)
換向閥7
4WE6Y6X/EG24NZ5L
1
立新力士樂(lè)
疊加式減壓閥
ZDR6DB2-30/15Y
2
立新力士樂(lè)
疊加式減壓閥
ZDR6DA2-30/15Y
1
立新力士樂(lè)
疊加式減壓閥
ZDR6DP2-30/15YM
3
立新力士樂(lè)
疊加式單向節(jié)流閥
Z2FS6-3X/
2
溢流閥1
DBW10B-5X/20G24Z5L
1
立新力士樂(lè)
溢流閥2
DB10-5X/20
1
外泄式液控單向閥
SV10PB1-30/
3
單向節(jié)流閥1
NDRV-12-P-B
更改過(guò)
12
西德福
單向節(jié)流閥2
DRVP-10-10
5
立新力士樂(lè)
單向節(jié)流閥3
Z1S6P1-30/
3
單向閥2
RVP12-10/
5
立新力士樂(lè)
比例壓力閥1
RZGO-A-033/210-31
2
ATOS
放大器
EMI-01F-AC/RR
2
ATOS
4.3 油管的選擇
根據(jù)選定的液壓閥的連接油口尺寸確定管道尺寸。液壓缸的進(jìn)、出油管按輸入、排出的最大流量來(lái)計(jì)算。
管接頭1變徑三通
2-∮25/1-∮16三通
20
余姚通用管件廠
管接頭2端直通
G1/2-∮16端直通
JB966-77
160
余姚通用管件廠
管接頭3端直通
G1-∮25端直通
JB966-77
12
余姚通用管件廠
管接頭5光桿端直通
G1/2-∮16端直通
JB988-77
4
余姚通用管件廠
管接頭6中間接頭
∮16-∮16
JB977-77
10
余姚通用管件廠
管接頭8三通
∮14卡套式三通
JB1948-77
8
余姚通用管件廠
管接頭9中間直角
∮14中間直角
JB1946-77
2
余姚通用管件廠
管接頭10端直通
G3/8-∮14端直通
JB1942-77
10
余姚通用管件廠
管接頭11端直通
G1/8-∮6端直通
JB1942-77
20
余姚通用管件廠
管接頭12壓力表
壓力表接頭M14*1.5-∮6
JB1957-77
25
余姚通用管件廠
變徑過(guò)渡管接頭
M48*2-Z1"(內(nèi)螺紋)
2
余姚通用管件廠
變徑過(guò)渡管接頭
M48*2-G1"(內(nèi)螺紋)
8
余姚通用管件廠
管接頭13端直通
G1-∮28端直通
JB966-77
16
余姚通用管件廠
管接頭14端直通接頭體
Z1"-∮28端直通接頭體
JB1921-77
4
管接頭13端直通
G1-∮25端直通
JB966-77
12
余姚通用管件廠
管接頭17端直通
M22*1.5-∮16端直通
JB966-77
4
余姚通用管件廠
第5章 驗(yàn)算液壓系統(tǒng)性能
5.1 壓力損失的驗(yàn)算及泵壓力的調(diào)整
1.工進(jìn)時(shí)的壓力損失的驗(yàn)算及泵壓力的調(diào)整
工進(jìn)時(shí)管路中的流量?jī)H為0.24L/min,因此流速很小,所以沿程壓力損失和局部損失都非常小,可以忽略不計(jì)[1]。這時(shí)進(jìn)油路上僅考慮調(diào)速閥的壓力損失,回油路上只有背壓閥的壓力損失,小流量泵的調(diào)整壓力應(yīng)等于工進(jìn)時(shí)液壓缸的工作壓力加上進(jìn)油路壓差,并考慮壓力繼電器動(dòng)作需要,則:
即小流量泵的溢流閥應(yīng)按此壓力調(diào)整。
2.快退時(shí)的壓力損失驗(yàn)算及大流量泵卸載壓力的調(diào)整
因快退時(shí),液壓缸無(wú)桿腔的回游量是進(jìn)油量的兩倍,其壓力損失比快進(jìn)時(shí)要大,因此必須計(jì)算快退時(shí)的進(jìn)油路與回油路的壓力損失,以便于確定大流量泵的卸載壓力。
已知:快退時(shí)進(jìn)油管和回油管長(zhǎng)度均為l=1.8m,油管直徑d=25m,通過(guò)的流量為進(jìn)油路=22.5L/min=,
回油路=45L/min=。液壓系統(tǒng)選用N32號(hào)液壓油,考慮最低工作溫度為15攝氏度,由手冊(cè)查出此時(shí)油的運(yùn)動(dòng)粘度v=1.5st=1.5,油的密度,液壓系統(tǒng)元件采用集成塊式的配置形式。
(1)確定油流的流動(dòng)狀態(tài) 按式經(jīng)單位換算為:
(6-1)
式中 v————平均流速(m/s)
d————油管內(nèi)徑(m)
————油的運(yùn)動(dòng)粘度()
q————通過(guò)的流量()
則進(jìn)油路中液流的雷諾數(shù)為:
回油路中液流的雷諾數(shù)為:
由上可知,進(jìn)回油路中的流動(dòng)都是層流。
(2)沿程壓力損失的計(jì)算: (6-2)
在進(jìn)油路上,流速則壓力損失為:
在回油路上,流速為進(jìn)油路流速的兩倍即v=4.24m/s,則壓力損失為:
(3)局部壓力損失 由于采用了集成塊式的液壓裝置,所以只考慮閥類元件和集成塊內(nèi)油路的壓力損失。通過(guò)各閥的局部損失按式計(jì)算,結(jié)果列于下表:
部分閥類元件局部壓力損失
元件名稱
額定流量
實(shí)際通過(guò)流量
額定壓力損失
實(shí)際壓力損失
單向閥2
25
16
2
0.82
三位五通電磁閥
63
16/32
4
0.26/1.03
二位二通電磁閥
63
32
4
1.03
單向閥
25
12
2
0.46
若取集成塊進(jìn)油路的壓力損失,回油路壓力損失為,則進(jìn)油路和回油路總的壓力損失為:
查表一得液壓缸負(fù)載F=521N;則快退時(shí)液壓缸的工作壓力為:
計(jì)算快退時(shí)泵的工作壓力: (6-3)
而
因此,大流量泵卸載閥10的調(diào)整壓力應(yīng)大于。
從以上驗(yàn)算可以看出,各種工況下的實(shí)際壓力損失都小于初選的壓力損失值,而且比較接近,說(shuō)明液壓系統(tǒng)的油路結(jié)構(gòu)、元件的參數(shù)是合理的,滿足要求。
5.2 液壓系統(tǒng)的發(fā)熱和溫升驗(yàn)算
在整個(gè)工作循環(huán)中,工進(jìn)階段所占用的時(shí)間最長(zhǎng),所以系統(tǒng)的發(fā)熱主要是工進(jìn)階段造成的,故按工進(jìn)工況驗(yàn)算系統(tǒng)溫升。
工進(jìn)時(shí)液壓泵的輸入功率如前面計(jì)算:
工進(jìn)時(shí)液壓缸的輸出功率:
系統(tǒng)總的發(fā)熱功率為:
已知油箱容積為V=315L=,則油箱近似散熱面積A為:
(6-4)
假定通風(fēng)良好,取油箱散熱系數(shù),則油液溫升為:
℃≈17.4℃ (6-5)
設(shè)環(huán)境溫度,則熱平衡溫度為:
=25℃+17.4℃=42.4℃[T]=55℃
所以油箱散熱基本可達(dá)要求。
第6章 液壓站的設(shè)計(jì)
6.1液壓站簡(jiǎn)介
液壓站的結(jié)構(gòu)型式有分散式和集中式兩種類型。
(1)分散式 這種型式將機(jī)床液壓系統(tǒng)的供油裝置、控制調(diào)節(jié)裝置分散在機(jī)床的各處。例如利用機(jī)床床身或底座作為液壓油箱存放液壓油。把控制調(diào)節(jié)裝置放任便于操作的地方。這種結(jié)構(gòu)的優(yōu)點(diǎn)是結(jié)構(gòu)緊湊,泄漏油易回收,節(jié)省占地面積,但安裝維修不方使。同時(shí)供油裝置酌振動(dòng)、液壓油的發(fā)熱都將對(duì)機(jī)床的工作精度產(chǎn)生不良影響,故較少采用,一般非標(biāo)設(shè)備不推薦使用。
(2)集中式 這種型式將機(jī)床按壓系統(tǒng)的供油裝置 , 控制調(diào)節(jié)裝置獨(dú)立于機(jī)床之外,單獨(dú)設(shè)置一個(gè)液壓站。這種結(jié)構(gòu)的優(yōu)點(diǎn)是安裝維修方便,按壓裝置的振動(dòng)、發(fā)熱都與機(jī)床隔開(kāi);缺點(diǎn)是液壓站增加了占地面積。
6.2 油箱設(shè)計(jì)
在開(kāi)式傳動(dòng)的油路系統(tǒng)中,油箱是必不可少的,它的作用是,貯存油液,凈化油液,使油液的溫度保持在一定的范圍內(nèi),以及減少吸油區(qū)油液中氣泡的含量。因此,進(jìn)行油箱設(shè)計(jì)時(shí)候,要考慮油箱的容積、油液在油箱中的冷卻、油箱內(nèi)的裝置和防噪音等問(wèn)題。
6.2.1油箱有效容積的確定
(一)油箱的有效容積
油箱應(yīng)貯存液壓裝置所需要的液壓油,液壓油的貯存量與液壓泵流量有直接關(guān)系,在一般情況下,油箱的有效容積可以用經(jīng)驗(yàn)公式確定:
( 6.1)
式中,——油箱的有效容積(L);
Q ——油泵額定流量(L/min);
K ——系數(shù);
查參考文獻(xiàn)[1],P47,取K=7,油泵額定流量Q=41.76 L/min,代入公式6.1,計(jì)算得:
=6×41.76=292.32 L
油箱有效容積確定后,還需要根據(jù)油溫升高的允許植,進(jìn)行油箱容積的驗(yàn)算。
6.2.2 油箱容積的驗(yàn)算
液壓系統(tǒng)的壓力、容積和機(jī)械損失構(gòu)成總的能量損失,這些能量損失轉(zhuǎn)化為熱量,使系統(tǒng)油溫升高,由此產(chǎn)生一系列不良影響。為此,必須對(duì)系統(tǒng)進(jìn)行發(fā)熱計(jì)算,以便對(duì)系統(tǒng)溫升加以控制。
液壓系統(tǒng)發(fā)熱的主要原因,是由于液壓泵和執(zhí)行元件的功率損失以及溢流閥的溢流損失所造成的,當(dāng)液壓油溫度升高后,會(huì)引起油液粘度下降,從而導(dǎo)致液壓元件性能的變化,壽命降低以及液壓油老化。因此,液壓油必須在油箱中得到冷卻,以保證液壓系統(tǒng)正常工作。
1 系統(tǒng)總的發(fā)熱公率
系統(tǒng)總的發(fā)熱公率H是估算得來(lái)的,查參考文獻(xiàn)[1],P 46,得系統(tǒng)總的發(fā)熱公率H估算公式:
(6.2)
式中,N——液壓泵輸入功率( KW);
——執(zhí)行元件的有效功率(KW);
若一個(gè)工作循環(huán)中有幾種工況,則應(yīng)求出其總平均有效功率,
系統(tǒng)總的發(fā)熱公率:H=N(1-η) (6.3)
式中 η——系統(tǒng)總效率。
由查參考文獻(xiàn)[5],液壓泵輸入功率:
N=Nd×η1 (6.4)
式中Nd——電動(dòng)機(jī)功率(KW);
η1——聯(lián)軸器傳動(dòng)效率。
查參考文獻(xiàn)[5] P7,取η=0.99,代入公式6.4得:
N=0.99×7.5KW=7.425KW
所以,液壓泵輸入功率N=7.425KW。
將N=7.425KW代入公式6.3,得:
H= N(1-η)=7.425×(1-0.695)KW=2.265KW。
2 散熱功率及溫升
油路系統(tǒng)的散熱,主要靠油箱表面散熱,油箱的散熱功率可以用下式進(jìn)行估算:
=KA (KW) (6.5)
式中, K——油箱的散熱系數(shù)(KW/℃);
A——油箱散熱面積();
——系統(tǒng)溫升植(℃)。
其中,油箱的散熱面積可以用下式估算
A=0.065 () (6.6)
式中,——油箱
收藏