購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
附錄1
專題:水射流清洗技術(shù)的研究現(xiàn)狀
摘要 近年來(lái)水射流清洗技術(shù)已在眾多領(lǐng)域得到廣泛的應(yīng)用,并且取得了顯著的成效。本文主要介紹了水射流清洗技術(shù)的工作原理、特點(diǎn)及其應(yīng)用現(xiàn)狀,并展望其發(fā)展前景和趨勢(shì)。
關(guān)鍵詞 水射流清洗技術(shù) 應(yīng)用現(xiàn)狀 發(fā)展趨勢(shì)
Abstract In resent years, water jet cleaning technology has obtained extensive application in many fields, and results of its application are notable. This paper mainly introduces operating principle feature and current situation of application of water jet cleaning technology, then, describes its development foreground and trend.
Key words water jet cleaning technology current situation of application
development trend
水射流清洗是一項(xiàng)不斷發(fā)展的清洗技術(shù),傳統(tǒng)的水射流清洗是延用至今的低壓大流量水射流沖洗,那時(shí)水射流清洗作業(yè)又稱為“水力剝層”。而高壓水射流清洗技術(shù)是水射流清洗技術(shù)的最新發(fā)展。由于世界各國(guó)對(duì)環(huán)境保護(hù)日益重視,高壓水射流清洗技術(shù)以其廣泛的通用性和對(duì)環(huán)境無(wú)害性在清洗行業(yè)異軍突起,備受清洗行業(yè)的表睞,應(yīng)用日益廣泛。
1.高壓水射流清洗技術(shù)的工作原理和特點(diǎn)
高壓水射流清洗技術(shù)的工作原理是利用高壓水泵將普通水的壓力提高至40-250MPa,單槍流量約為20-39L/min,從噴嘴射出,形成超高壓水射流或磨料水射流,利用水射流的強(qiáng)大沖擊力、沖蝕力和剝離能力,快速地將涂層、結(jié)垢,鐵銹和油漆去除干凈。在清洗時(shí),可采用純水射流清洗和磨料水射流清洗兩種方式。采用純水清洗時(shí),水射流的壓力很高,可采用旋轉(zhuǎn)噴頭,清洗速度快,設(shè)備簡(jiǎn)單。采用磨料水射流清洗時(shí),水射流的壓力相對(duì)較小,磨料為便宜的石莫砂,操作相對(duì)復(fù)雜。水射流清洗技術(shù)是射流技術(shù)和清洗設(shè)備組合在一起而形成的。磨料水射流是磨料與高速流動(dòng)的水或者與高壓水互相混合而形成的液固兩相介質(zhì)射流。磨料射流也稱為高效射流(也包括脈沖射流,空化射流等),分為后混合磨料射流,前混合磨料射流和外混合磨料射流。外混合磨料射流主要用于清洗。在清洗技術(shù)中實(shí)際應(yīng)用的水射流大致可以分為三種類型:連續(xù)射流、脈沖射流和空化射流。連續(xù)射流又根據(jù)其周圍介質(zhì)分為:淹沒(méi)射流和非淹沒(méi)射流,高壓水射流清洗使用非淹沒(méi)連續(xù)射流。水射流清洗的工作參數(shù)主要是射流的工作壓力和流量,其中,尤以壓力對(duì)水射流的影響顯著,只有當(dāng)水射流的工作壓力達(dá)到一定值時(shí),才能對(duì)材料造成破壞。提高水射流的沖蝕和切割效果的有力措施是適當(dāng)?shù)靥岣吖ぷ鲏毫?,而要提高水射流的崩裂、剝離及沖運(yùn)效果,則要在保證足夠壓力的情況下,增加射流的水流量。高壓水射流清洗裝置稱為高壓水射流清洗機(jī)主要由高壓柱塞泵、動(dòng)力部分、噴嘴、高壓軟管及工作附件等組成。
2. 高壓水射流清洗的應(yīng)用現(xiàn)狀
高壓水射流清洗是物理清洗方法中的一項(xiàng)重要的新技術(shù),物理清洗技術(shù)是世界清洗技術(shù)發(fā)展的方向,而化學(xué)清洗只能適用于有限的清洗對(duì)象。通過(guò)多年的研究與實(shí)踐,越來(lái)越多的用戶開(kāi)始尋找和轉(zhuǎn)向物理清洗方法。與傳統(tǒng)的手工、機(jī)械方法清洗、化學(xué)方式清洗相比,高壓水射流清洗具有如下優(yōu)點(diǎn):
1. 選擇合適的壓力等級(jí),高壓水射流清洗不會(huì)損傷被清洗機(jī)體。
2. 清洗過(guò)后的零部件不需要進(jìn)行潔凈處理。
3. 能夠清洗形狀和結(jié)構(gòu)復(fù)雜的零件,能在空間狹窄、復(fù)雜環(huán)境、惡 劣有害的場(chǎng)合進(jìn)行清洗。
4. 清洗效率高、質(zhì)量好,設(shè)備結(jié)構(gòu)簡(jiǎn)單,操作方便,安全可靠。
5. 易于實(shí)現(xiàn)機(jī)械化、自動(dòng)化、便于數(shù)字控制。
6. 高壓水射流清洗是用普通自來(lái)水于高速度下的沖刷清洗,所以它不污染,環(huán)境,不腐蝕設(shè)備,不會(huì)造成任何機(jī)械損傷,還可除去用化學(xué)清洗難溶或不能溶的特殊垢。
由于高壓水射流清洗是利用水射流的打擊力將附著物清除掉,在水中不需加入任何化學(xué)藥劑。因此高壓水射流清洗技術(shù)范圍非常廣泛,幾乎遍及國(guó)民經(jīng)濟(jì)的各個(gè)領(lǐng)域,被清洗物的形狀、大小和性質(zhì)差異很大,清洗要求也各不相同。具體來(lái)說(shuō),在石油化工、電力、冶金等工業(yè)部門中得到廣泛的應(yīng)用,可用于清洗容器,也可用于清洗各種設(shè)備、管道、煤氣管線及換熱器,還可用于清洗船舶上積附的海洋生物和鐵銹、鋼鐵鑄件上的清砂等。
水射流技術(shù)的清洗對(duì)象主要有:換熱器,包括列管式換熱器、管程換熱器、螺旋板式換熱器、蒸發(fā)器等;管道,包括各種輸送物料管、廢水、廢渣排放管、管網(wǎng)及管式干燒器等;容器,包括反應(yīng)塔、缸、罐釜、沸騰槽、混合器、冷卻塔、槽車仍儲(chǔ)罐等,專業(yè)器材包括船舶、機(jī)場(chǎng)跑道、鉆桿、鉆具、機(jī)車、軋機(jī)和鋼鐵構(gòu)件及陽(yáng)極板等;其它設(shè)備包括過(guò)濾機(jī)板框、柵格板、水泥地板、排風(fēng)機(jī)、送風(fēng)管及大型零部件等,被清洗的物料包括各種類型的結(jié)垢、結(jié)晶、板結(jié)、附著物、反應(yīng)成沉淀物料及涂料、油漆、油污等。近年來(lái),高壓水射流清洗技術(shù)還要更深入、更廣泛的領(lǐng)域擴(kuò)展、延伸。高壓水射流清洗火箭發(fā)動(dòng)機(jī),清洗飛機(jī)跑道、清洗50萬(wàn)伏超高壓線路,清洗火炮筒壁等主面也都取得了一定進(jìn)展。此處,高壓水射流技術(shù)非常適合核電站及核化條件清洗。對(duì)核電站的清洗,是保證核電站安全正常運(yùn)行必不可少的重要工作。水射流清洗核電站技術(shù)優(yōu)于化學(xué)、機(jī)械等清洗方法,是目前最理想的清洗方法。在野戰(zhàn)條件下式軍事演習(xí)后對(duì)遭受核生化污染的人員、武器、技術(shù)裝備也可采用高壓水射流清洗。
3. 高壓水射流清洗技術(shù)的發(fā)展前景
采用先進(jìn)的高壓水射流清洗技術(shù),取代傳統(tǒng)落后的清洗方法,可大幅度地提高清洗質(zhì)量和清洗效率、降低成本、改善工作環(huán)境,避免污染。特別是近10年來(lái),由于高壓往復(fù)式柱塞泵以及與配套的高壓軟管。高壓閥和旋轉(zhuǎn)接頭等輔助裝置的提高,性能的改善;國(guó)內(nèi)外一些高壓水射流清洗技術(shù)的研究成果已逐步形成商品,應(yīng)用的領(lǐng)域和范圍還在迅速擴(kuò)大。
從整體上來(lái)說(shuō),水射流清洗產(chǎn)業(yè)的回化進(jìn)程將加快,即向?qū)I(yè)化、社會(huì)化、系列化和高級(jí)化方向發(fā)展,全能化和全程化服務(wù)水平不斷提高【1】。在工業(yè)清洗行業(yè)中,高壓水射流清洗技術(shù)將占絕對(duì)優(yōu)勢(shì),是我國(guó)工業(yè)清洗的必由之路【3】。在高壓水射流技術(shù)設(shè)備自身實(shí)現(xiàn)可靠運(yùn)行的前提下,提高智能化水平。高壓水射流、機(jī)器人與遠(yuǎn)程控制系統(tǒng)的結(jié)合,將是高壓水射流清洗技術(shù)發(fā)展的必然趨勢(shì)。
參考文獻(xiàn):
【1】 曹昊翔,張正學(xué).水射流清洗技術(shù)應(yīng)用現(xiàn)狀及其前景.長(zhǎng)沙礦山研究建院50周年院慶論文集,2006.10
【2】 孫建勛,陳毅強(qiáng),趙隕.高壓水射流清洗技術(shù).管道技術(shù)與設(shè)備,
2001.2
【3】 辛承梁.高壓水射流的清洗功能.化學(xué)清洗,1992.
附錄2
水射流的數(shù)值模擬
摘要
計(jì)算流體力學(xué)的方法已經(jīng)發(fā)展到找出在磨料-空氣-水噴射形成期間在管嘴處相遇的微粒和空氣的速度的分布情況。這項(xiàng)研究已進(jìn)行了采用一種多相方法。磨粒被視為一個(gè)固體顆粒連續(xù)相。被用于抽取磨粒進(jìn)入噴射裝置的空氣被視為一連續(xù)相,水被視為主要的連續(xù)相?;痉匠屉x散為采用有限體積方法?;痉匠痰慕夥ㄊ遣捎孟嚅g滑移算法?;痉匠探剖褂猛牧髂P?。當(dāng)空氣相集中于混合頻管的中心區(qū)域時(shí),磨粒進(jìn)入噴嘴和集中管,在這兩個(gè)地方微粒沿著無(wú)孔壁面分布、沿著管壁飄動(dòng)。在集中管處,空氣相和水相的分布形式表明了一個(gè)可能的振動(dòng)。采用不同的磨料進(jìn)口角度和不同的磨料進(jìn)口位置進(jìn)行仿真模擬實(shí)驗(yàn)。模擬的結(jié)果清楚地表明,磨料進(jìn)口角度和位置對(duì)集中管出口處速度分布的影響。從模擬中發(fā)現(xiàn)最優(yōu)的磨料進(jìn)口角度取決于磨料在混合室中的位置。當(dāng)磨料進(jìn)口位置靠近錐形部分,即混和空氣的較低部分時(shí),較低的角度是有益的;當(dāng)磨料進(jìn)口位置靠近開(kāi)孔口(節(jié)流口)的,即混合空氣的較高部分時(shí),較高的角度是優(yōu)秀的。在出口處的空氣、水和磨料的速度和體積分?jǐn)?shù)與可得到的試驗(yàn)數(shù)據(jù)進(jìn)行比較。模擬的結(jié)果顯示出與試驗(yàn)數(shù)據(jù)很好的一致性。
1.引言
速度分布在磨料水射流精密切割中是非常重要的參數(shù)。找到水和磨料的速度的實(shí)驗(yàn)結(jié)果已經(jīng)采用不同的方法獲得。但是在實(shí)際情況下,磨料水射流包含三相的流動(dòng)(水、空氣和固體)。大多數(shù)研究者已經(jīng)進(jìn)行了磨料和水的實(shí)驗(yàn),由于在集中管的出口處的空氣速度是難以測(cè)量的。
Scharner et al 在1998年根據(jù)磨料的流動(dòng)頻率計(jì)算出空氣的流動(dòng)頻率。從他們的研究論文可以清楚地知道,混合室的幾何形狀對(duì)空氣流動(dòng)頻率有很大的影響。Abduka和 Crofton在1998年指出,在混合室內(nèi)部的真空壓力隨著水壓力的增加而增加,而且也取決于孔口部位的直徑。Neusen et al 在1994年指出關(guān)于容積積位的磨料水射流是由大約4%至6%的水,0.2%至0.5%的磨料和93%至95%的空氣所組成。Tazibt et al在1996年指出磨粒吸收的空氣占磨料水射流多于百分之九十的體積,于是在磨料水射流中,空氣有很大的影響。有些作者已試圖模擬磨料水射流,但是他們僅考慮到兩相(水和固體)。JainYe在1996年也試圖模擬磨料水射流,他考慮到粒子運(yùn)動(dòng)和粒子運(yùn)動(dòng)的拉格朗日方程的軌線。他指出漸細(xì)的進(jìn)口角度對(duì)在噴嘴出口的粒子聚集和運(yùn)動(dòng)的能量分布有著深遠(yuǎn)的影響。J Ye和R Kovacevic在1999年也還模擬了水射流的兩相,在這兩個(gè)模擬中,他們采用了直接注射的磨粒水射流(磨粒射流)。在本篇文章中,鑒于傳統(tǒng)噴嘴三相射流的情況,我們已試著模擬磨料水射流。
用計(jì)算流體力學(xué)方法來(lái)分析磨料水射流對(duì)找出在磨料水射流形成期間存在的不同相的速度分布是十分有用的工具。軟件CFX-4被用于這些模擬。水和固體被認(rèn)為是不可壓縮流,而空氣被認(rèn)為是可壓縮流。
本文論述磨料水射流所模擬的存在于傳統(tǒng)噴射系統(tǒng)的三相和不同磨料進(jìn)口角度及在混合室中的磨料進(jìn)口位置。
2.數(shù)學(xué)模型
依據(jù)雷諾數(shù),顯然磨料水射流是湍流。水通常是以高速通過(guò)節(jié)流口的,然而空氣和磨料是以相當(dāng)小的速度流動(dòng)。從高速水到低速的磨粒有一個(gè)能量轉(zhuǎn)移,從而影響了工件。因此,磨料射流的沖擊性能是沖擊微粒的總質(zhì)量和他們?cè)谂鲎仓械乃俣鹊囊粋€(gè)參數(shù)。所有磨粒的平均速度是一個(gè)數(shù)量,這就必須決定提高截割頭設(shè)計(jì)。為了找出在噴嘴出口的速度分布采用模擬技術(shù),水、空氣和固體系統(tǒng)需要被視為多相流。對(duì)穩(wěn)定狀態(tài)、湍流和關(guān)于熱傳遞也進(jìn)行了模擬。在多相中水被視為主要相。模擬技術(shù)隨著湍流模型(湍流的動(dòng)能和能量損耗)采用CFX-4軟件而得到改善。
2.1模擬方程
三相由希臘記號(hào)、和標(biāo)記,它們分別代表水、空氣和固體,表示相的數(shù)目。每一相的體積分?jǐn)?shù)被標(biāo)記為。當(dāng)模擬仿真采用柱面坐標(biāo)系進(jìn)行時(shí),變量由三個(gè)分量,像,所有的三相用歐拉方法。
由連續(xù)性方程:
-------------------------------------------------- (1)
由動(dòng)量方程:
------------------------(2)
這里,
----------------------------------------------------------------------(3)
和
-----------------------------------------------------------------------(4)
及能量方程(不可壓縮流)
-----------------------------(5)
其中是焓(熱函),,于是,狀態(tài)代數(shù)方程和每相的分量方程如下:
---------------------------------------------------------------------(6)
----------------------------------------------------------------------(7)
考慮到體積分?jǐn)?shù)總和是1:
普遍對(duì)流損耗方程是:
--------------(8)
術(shù)語(yǔ)描述在和之間范圍的相間轉(zhuǎn)換。
。于是,所有的相間的轉(zhuǎn)換術(shù)語(yǔ)的總和是0。
體積分?jǐn)?shù)方程:
------------------------------------------------(9)
其中
體積分?jǐn)?shù)的湍流擴(kuò)散采用Eddy擴(kuò)散假說(shuō)來(lái)模擬。假設(shè)在一個(gè)湍流相中參數(shù)為k和的運(yùn)輸方程將以同樣的形式作為相對(duì)標(biāo)量的對(duì)流損耗方程。
--------(10)
--------(11)
源術(shù)語(yǔ)被視為同它們的單相相似一樣,于是
--------------------------------------------------------------(12)
-----------------------------------(13)
其中P是剪切應(yīng)力,并且G是由于內(nèi)部力而產(chǎn)生的。
常數(shù)被設(shè)置為。
由于空氣被視為可壓縮流,其密度將隨著壓力的變化而變化,理想氣體定律:
-----------------------------------------------------------------------(14)
其中
用代碼存儲(chǔ)和解決的壓力P實(shí)際上是不同于熱力壓力p和固定參考?jí)毫?.
2.2幾何和參數(shù)
柱坐標(biāo)系是用來(lái)創(chuàng)建常規(guī)霧沬噴射的幾何。示意圖顯示在圖1中,對(duì)于三相流(水,空氣和固體)來(lái)說(shuō),環(huán)境被認(rèn)為是在大氣條件。由那個(gè)原因額外的阻塞被創(chuàng)建,被當(dāng)作大氣壓和100%空氣的壓力邊界。然而,水壓被視為276MPa,幾何尺寸和參數(shù)見(jiàn)表1。磨料進(jìn)口角度和它的位置見(jiàn)圖2。
3.模擬仿真驗(yàn)證
盡管模擬發(fā)展為三相,為了充分驗(yàn)證理論結(jié)果,測(cè)量三相的速度是十分困難的。然而,在集中管出口處的速度分布已被Zoltani和Bicen在1990年所出版的一相流的實(shí)驗(yàn)數(shù)據(jù)所證實(shí)。完全湍流,直徑25.4mm的兩相圓射流,20m/s的出口速度,包含1.5%的載荷密度的直徑為80μm的小珠在他們的測(cè)試中被檢驗(yàn)。他們利用激光多普勒在出口少數(shù)幾個(gè)位置測(cè)量空氣和固體的速度,展現(xiàn)在圖3到圖5的結(jié)果表明,發(fā)展起來(lái)的數(shù)值模擬與實(shí)驗(yàn)研究處于良好的量的一致性。
一些其它的實(shí)驗(yàn)發(fā)現(xiàn)也被用來(lái)驗(yàn)證模擬結(jié)果,這些實(shí)驗(yàn)發(fā)現(xiàn)提供在出口處三相體積分?jǐn)?shù)的測(cè)量法及提供對(duì)水、空氣和固體的分析。例如,Neusen et al在1991年使用X光掃描密度計(jì)來(lái)測(cè)量在出口處空氣、水和固體的體積分?jǐn)?shù)。X光掃描器產(chǎn)生一束非常細(xì)的為0.125mm的X射線,它通過(guò)射流并且受包含在射流內(nèi)的物質(zhì)的相互作用而減弱。X-射線束的強(qiáng)度通過(guò)使用一個(gè)閃爍探測(cè)器而被測(cè)得。吸光系數(shù)接著被用來(lái)估計(jì)空氣、水和磨料的局部平均物質(zhì)體積分?jǐn)?shù)。他們使用范圍從207到345MPa的壓力,和從0.34到0.57kg/min的磨料流動(dòng)率來(lái)測(cè)量4mm投射距離的體積分?jǐn)?shù)。源于模擬的體積分?jǐn)?shù)與這些實(shí)驗(yàn)結(jié)果進(jìn)行比較。在集中管出口處即0mm投射距離處;從模擬中獲取體積分?jǐn)?shù)。在集中管出口處水的模擬體積分?jǐn)?shù)在靠近壁處是更高的。這可能導(dǎo)致射流裝置可能的閃爍現(xiàn)象。比較的體積分?jǐn)?shù)結(jié)果顯示于圖6.7.8中。
4.磨料進(jìn)口角度和它的位置的影響
模擬被發(fā)展為在混合室中不同的磨料進(jìn)口角度和它的位置。集中管出口處的速度分布在本節(jié)中被介紹。出口處的射流速度被發(fā)現(xiàn)取決于在混合室中的混合過(guò)程及磨粒加速過(guò)程中所花費(fèi)的時(shí)間,也有從水到磨粒的動(dòng)量轉(zhuǎn)移。對(duì)于傳統(tǒng)的噴射系統(tǒng),模擬條件在表1中被給出。
對(duì)于精密切割,靠近中心軸線的射流速度是重要的,而且靠近射流中心位置的速度應(yīng)該是最大速度。三個(gè)不同的磨料進(jìn)口位置被使用為獲得最佳的進(jìn)口位置(圖2)。磨料的中心距離距裝置的錐形部分是2.25mm。距混合室的較低部分分別為5.25mm和6.75mm的另外兩個(gè)磨料進(jìn)口位置也被考慮。對(duì)于不同的磨料進(jìn)口角度,空氣和固體將從在混合室、錐形部分和集中管中的不同位置彈回。表2說(shuō)明了這些現(xiàn)象。
顯然,從表2中,如果進(jìn)口角度在20.56°和55.56°之間,在距錐形部分為2.25mm的磨料進(jìn)口位置,磨料將會(huì)擊中斜面。如果進(jìn)口角度少于20.56°,那么它將擊中混合室。圖9表明了在集中管出口為不同磨料進(jìn)口角度的水速。對(duì)于30°進(jìn)口角度,水速被發(fā)現(xiàn)比沿半徑的其它水速要高。同樣,圖10和11顯示了不同的磨料進(jìn)口角度的空氣和固體的速度。從圖9至圖11,顯然,對(duì)于30°磨料進(jìn)口角度,由噴嘴的這種幾何輪廓射流速度才變成最大。但是如果幾何尺寸被改變,像混合室長(zhǎng)度和直徑,錐形進(jìn)口角度等,在最大射流速度,最佳磨料進(jìn)口角度可能會(huì)改變。
在這里還應(yīng)該提到,對(duì)于30°磨料進(jìn)口角度,沿半徑方向的不同相的速度是不準(zhǔn)確的模式。這暗示著在混合室內(nèi)混合過(guò)程是不足夠得到在射流中心位置處的最大速度。圖12顯示了不同磨料進(jìn)口角度的射流的平均速度。顯然,對(duì)于30°磨料進(jìn)口角度(29°磨料進(jìn)口角度也被使用為獲得一個(gè)精確的模式),射流的平均速度是最大的。圖13顯示了靠近中心軸線處水、空氣和固體的速度,并且能看出對(duì)于30°磨料進(jìn)口角度,不同相的各自速度是最大的,而且遵循一個(gè)幾乎相似的模式。若是75°,三相的速度是相似的但不是最大。
下一步準(zhǔn)備找出不同磨料進(jìn)口角度對(duì)進(jìn)口位置的影響。就圖12中所說(shuō)明的結(jié)果而論,模擬技術(shù)被發(fā)展為不同的磨料進(jìn)口角度(30°,45°和60°)和不同的進(jìn)口位置。
新的磨料進(jìn)口位置距錐形部分為6.75mm,模擬是采用為30°,45°和60°磨料進(jìn)口角度進(jìn)行的。一個(gè)附加的模擬被實(shí)施采用45°磨料進(jìn)口角度,進(jìn)口位置為5.25mm。對(duì)于精密切削,靠近射流中心區(qū)域射流速度應(yīng)該是最大。圖14至16展示了在沿著半徑方向?yàn)?0°磨料進(jìn)口角度和兩個(gè)不同的進(jìn)口位置的出口平面處的速度分布。盡管為以前的進(jìn)口位置,卻獲得了一個(gè)更好的結(jié)果。但是如果45°進(jìn)口角度,對(duì)5.25mm的進(jìn)口位置來(lái)說(shuō),更好的結(jié)果會(huì)被獲得。這些結(jié)果展示在圖17,18和19中。但是如果是60°的磨料進(jìn)口角度(圖20,21和22),當(dāng)使用6.75mm的磨料進(jìn)口位置,更好的結(jié)果會(huì)被找到。于是,顯然,對(duì)于靠近孔口或者混合室的較高面的進(jìn)口位置,一個(gè)更高的角度是最佳磨料進(jìn)口角度。對(duì)于磨料進(jìn)口角度的較高位置,速度分布圖顯示了最大速度是在射流中心線的附近。
5.結(jié)論
如果磨料進(jìn)口位置接近錐形部分即混合室的底部,當(dāng)考慮到射流的最大速度時(shí),一個(gè)較低的角度將是最佳的磨料進(jìn)口角度。
如果進(jìn)口位置朝著孔口方向改變(即混合室的較高位置),一個(gè)較高的磨料進(jìn)口角度將是最佳的。一個(gè)磨料進(jìn)口角度的較高位置即靠近孔口速度分布圖,表明射流的最大速度是在中心軸線附近。這也在混合室中,混合過(guò)程是最佳的,于是射流的閃爍現(xiàn)象減至最低限度,因此精密射流切割能夠?qū)崿F(xiàn)。
6.致謝
編者們要感謝澳大利亞研究咨詢委員會(huì)支持本項(xiàng)工作(作品)。
7.參考文獻(xiàn)(略)
8.學(xué)術(shù)用語(yǔ)
B 內(nèi)部力 c相間術(shù)語(yǔ) C常數(shù) D集中管直徑 F內(nèi)部相非阻力 G基于內(nèi)部力的產(chǎn)品 h熱力學(xué)焓 H總焓或狀態(tài)焓 k動(dòng)能
相的總數(shù) p熱力學(xué)壓力 P壓力/剪切應(yīng)力 參考?jí)毫?
r半徑 R普遍氣體常數(shù) S源術(shù)語(yǔ) t時(shí)間 T溫度 U速度 射流速度 W分子量 x出口距離 柱面坐標(biāo)
錐形進(jìn)口部分計(jì)算角度 磨料進(jìn)口角度 物理性質(zhì) 密度 湍流普蘭特爾數(shù) 湍流動(dòng)能損耗 導(dǎo)熱系數(shù) 分子黏度 湍流黏度 渦流渦流擴(kuò)散系數(shù)
下標(biāo)(腳碼、索引)
a空氣 P磨粒 w水 T湍流 、、相
符號(hào)
d阻力 h熱轉(zhuǎn)移 T張量
9.表格
表格1. 模擬條件
噴嘴尺寸
孔口直徑 0.33mm
混合室直徑 6mm
混合室長(zhǎng)度, 12mm
錐形進(jìn)口角度
集中管直徑, 1.27mm
集中管長(zhǎng)度 75mm
磨料進(jìn)口直徑 3mm
水的密度
空氣密度
磨料密度
磨料直徑
進(jìn)口條件
水壓
氣壓
磨料質(zhì)量流動(dòng)率
空氣流動(dòng)率
磨料進(jìn)口角度
表格2
距錐形管距離(mm)
角度范圍(空氣和磨料將擊中斜面)
角度范圍(空氣和磨料將通過(guò)集中管)
2.25
5.25
6.75
10.圖
圖1,磨料水射流噴嘴示意圖 圖2,混合室中的網(wǎng)格和板型
圖3,空氣速率 圖4,固體粒子速率
圖5,水的速率 圖6,水的體積分?jǐn)?shù)
圖7,磨料的體積分?jǐn)?shù) 圖8,空氣的體積分?jǐn)?shù)
圖9,集中管出口處沿半徑方向的水速
圖10,集中管出口處沿半徑方向的空氣速度
圖11,集中管出口處沿半徑方向的固體速度
圖12,不同磨料進(jìn)口角度的射流平均速度
圖13,不同磨料進(jìn)口角度的射流中心線附近的相的速度
圖14,兩不同位置處磨料進(jìn)口角度的水的速度
圖15,兩不同位置處磨料進(jìn)口角度的空氣速度
圖16,兩不同位置處磨料進(jìn)口角度的固體速度
圖17,三個(gè)不同位置處磨料進(jìn)口角度的水的速度
圖18,三個(gè)不同位置處磨料進(jìn)口角度的空氣速度
圖19,三個(gè)不同位置處磨料進(jìn)口角度的固體速度
圖20,兩不同位置處磨料進(jìn)口角度的水的速度
圖21,兩不同位置處磨料進(jìn)口角度的空氣速度
圖22,兩不同位置處磨料進(jìn)口角度的固體速度
附錄3