人教版小學數學知識總結大全.doc
《人教版小學數學知識總結大全.doc》由會員分享,可在線閱讀,更多相關《人教版小學數學知識總結大全.doc(11頁珍藏版)》請在裝配圖網上搜索。
小學數學知識點大全 第一部分 數與代數 一、概念 (一)整數 1、整數的意義:自然數和0都是整數。 2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。 一個物體也沒有,用0表示,0也是自然數。 3、計數單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。其中“一”是計數的基本單位。 10個1是10,10個10是100……每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。 4、數位 :計數單位按照一定的順序排列起來,它們所占的位置叫做數位。 5、整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數位連續(xù)有幾個0都只讀一個零。 6、整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。 7、一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數。有時還可以根據需要,省略這個數某一位后面的數,寫成近似數。 ⑴ 準確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫后的數是原數的準確數。 例如:把1254300000 改寫成以萬做單位的數是125430萬;改寫成以億做單位的數 12.543 億。 ⑵ 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾數,用一個近似數來表示。 例如: 1302490015 省略億后面的尾數是 13 億。 ⑶ 四舍五入法:求近似數,看尾數最高位上的數是幾,比5小就舍去,是5或大于5舍去尾數向前一位進1。這種求近似數的方法就叫做四舍五入法。 8、整數大小的比較:位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。以此類推。 (二)小數 1、小數的意義 :把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。如1/10記作0.1,7/100記作0.07。 一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾…… 一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。 小數點右邊第一位叫十分位,計數單位是十分之一(0.1);第二位叫百分位,計數單位是百分之一(0.01)……小數部分最大的計數單位是十分之一,沒有最小的計數單位。小數部分有幾個數位,就叫做幾位小數。如0.36是兩位小數,3.066是三位小數。 在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位“十分之一”和整數部分的最低單位“一”之間的進率也是10。 2、小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點”,小數部分從左向右順次讀出每一位數位上的數字。 3、小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。 4、比較小數的大?。合瓤此鼈兊恼麛挡糠郑?,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大…… 5、小數的分類 ⑴ 純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。 ⑵ 帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。 ⑶ 有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。 ⑷ 無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 …… ⑸ 無限不循環(huán)小數:一個數的小數部分,數字排列無規(guī)律且位數無限,這樣的小數叫做無限不循環(huán)小數。 例如:∏ ⑹ 循環(huán)小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環(huán)小數。 例如: 3.555 …… 0.0333 …… 12.109109 …… 一個循環(huán)小數的小數部分,依次不斷重復出現的數字叫做這個循環(huán)小數的循環(huán)節(jié)。 例如: 3.99 ……的循環(huán)節(jié)是“ 9 ” , 0.5454 ……的循環(huán)節(jié)是“ 54 ”。 ⑺ 純循環(huán)小數:循環(huán)節(jié)從小數部分第一位開始的,叫做純循環(huán)小數。 例如: 3.111 …… 0.5656 …… ⑻ 混循環(huán)小數:循環(huán)節(jié)不是從小數部分第一位開始的,叫做混循環(huán)小數。 3.1222 …… 0.03333 …… 寫循環(huán)小數的時候,為了簡便,小數的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數字上各點一個圓點。如果循環(huán) 節(jié)只有一個數字,就只在它的上面點一個點。 (三)分數 1、分數的意義 :把單位“1”平均分成若干份,表示這樣的一份或者幾份的數叫做分數。 在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。 把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。 2、分數的讀法:讀分數時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數的讀法來讀。 3、分數的寫法:先寫分數線,再寫分母,最后寫分子,按照整數的寫法來寫。 4、比較分數的大小: ⑴ 分母相同的分數,分子大的那個分數就大。 ⑵ 分子相同的分數,分母小的那個分數就大。 ⑶ 分母和分子都不同的分數,通常是先通分,轉化成通分母的分數,再比較大小。 ⑷ 如果被比較的分數是帶分數,先要比較它們的整數部分,整數部分大的那個帶分數就大;如果整數部分相同,再比較它們的分數部分,分數部分大的那個帶分數就大。 5、分數的分類 按照分子、分母和整數部分的不同情況,可以分成:真分數、假分數、帶分數 ⑴ 真分數:分子比分母小的分數叫做真分數。真分數小于1。 ⑵ 假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于或等于1。 ⑶ 帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。 6、分數和除法的關系及分數的基本性質 ⑴ 除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當于分子,而不能說成被除數就是分子。 ⑵ 由于分數和除法有密切的關系,根據除法中“商不變”的性質可得出分數的基本性質。 ⑶ 分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。 7、約分和通分 ⑴ 分子、分母是互質數的分數,叫做最簡分數。 ⑵ 把一個分數化成同它相等但分子、分母都比較小的分數,叫做約分。 ⑶ 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。 ⑷ 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。 ⑸ 通分的方法:先求出原來幾個分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。 8、倒 數 ⑴ 乘積是1的兩個數互為倒數。 ⑵ 求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。 ⑶ 1的倒數是1,0沒有倒數 (四)百分數 1、百分數的意義:表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。 2、百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。 3、百分數的寫法:百分數通常不寫成分數形式,而在原來的分子后面加上百分號“%”來表示。 4、百分數與折數、成數的互化: 例如:三折就是30%,七五折就是75%,成數就是十分之幾,如一成就是牐 闖砂俜質 褪?0%,則六成五就是65%。 5、納稅和利息: 稅率:應納稅額與各種收入的比率。 利率:利息與本金的百分率。由銀行規(guī)定按年或按月計算。 利息的計算公式:利息=本金×利率×時間 6、百分數與分數的區(qū)別: ⑴ 意義不同。百分數是“表示一個數是另一個數的百分之幾的數。”它只能表示兩數之間的倍數關系,不能表示某一具體數量。因此,百分數后面不能帶單位名稱。 分數是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數”。分數不僅可以表示兩數之間的倍數關系,還可以表示一定的數量。 ⑵ 書寫形式不同。百分數通常不寫成分數形式,而采用百分號“%”來表示。如:百分之四十五,寫作:45%;分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分數,不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。 7、數的互化 ⑴ 小數化成分數:有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。 ⑵ 分數化成小數:用分母去除分子。能除盡的就化成有限小數,除不盡的,按要求取近似數。 ⑶小數化成百分數:只要把小數點向右移動兩位,同時在后面添上百分號。 ⑷百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。 ⑸分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。 ⑹百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。 (五)數的整除 1、整除的意義 整數a除以整數b(b ≠ 0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a 。 2、因數和倍數 ⑴ 如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的因數。倍數和因數是相互依存的。 ⑵ 一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身。 ⑶ 一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。 3、奇數和偶數 ⑴ 自然數按能否被2 整除的特征可分為奇數和偶數。 ① 能被2整除的數叫做偶數。0也是偶數。 ② 不能被2整除的數叫做奇數。 ⑵ 奇數和偶數的運算性質: ① 相鄰兩個自然數之和是奇數,之積是偶數。 ② 奇數+奇數=偶數,奇數+偶數=奇數,偶數+偶數=偶數;奇數-奇數=偶數, 奇數-偶數=奇數,偶數-奇數=奇數,偶數-偶數=偶數;奇數×奇數=奇數,奇數×偶數=偶數,偶數×偶數=偶數。 4、整除的特征 ⑴ 個位上是0、2、4、6、8的數,都能被2整除。 ⑵ 個位上是0或5的數,都能被5整除。 ⑶ 一個數的各位上的數的和能被3整除,這個數就能被3整除。 ⑷ 一個數各位數上的和能被9整除,這個數就能被9整除。 ⑸ 能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。 5、質數和合數 ⑴ 一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。 100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 ⑵ 一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數,例如 4、6、8、9、12……都是合數。 ⑶ 1既不是質數也不是合數,如果把自然數按其因數的個數的不同分類,可分為質數、合數和1。 6、分解質因數 ⑴ 質因數 每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。 ⑵ 分解質因數 把一個合數用質因數相乘的形式表示出來,叫做分解質因數。通常用短除法來分解質因數。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。 ⑶ 公因數 幾個數公有的因數叫做這幾個數的公因數。其中最大的一個叫這幾個數的最大公因數。 公因數只有1的兩個數,叫做互質數。成互質關系的兩個數,有下列幾種情況: ①和任何自然數互質;②相鄰的兩個自然數互質;③當合數不是質數的倍數時,這個合數和這個質數互質; ④兩個合數的公因數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。 如果較小數是較大數的因數,那么較小數就是這兩個數的最大公因數。 如果兩個數是互質數,它們的最大公因數就是1。 ⑷ 公倍數:幾個數公有的倍數叫做這幾個數的公倍數。其中最大的一個叫這幾個數的最大公倍數。最小的一個,叫做這幾個數的最小公倍數。 如果較大數是較小數的倍數,那么較大數就是這兩個數的最小公倍數。 如果兩個數是互質數,那么這兩個數的積就是它們的最小公倍數。 幾個數的公因數的個數是有限的,而幾個數的公倍數的個數是無限的。 二、性質和規(guī)律 (一)商不變的規(guī)律 :在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。 (二)小數的性質 :小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。 (三)小數點位置的移動引起小數大小的變化規(guī)律: 1、小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍…… 2、小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍…… 3、小數點向左移或者向右移位數不夠時,要用“0"補足位。 (四)分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。 三、運算法則 (一)整數四則運算的法則 1、加法:把兩個數合并成一個數的運算叫做加法。 加數+加數=和 一個加數=和-另一個加數 2數減法:已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。加法和減法互為逆運算。 被減數-減數=差 被減數-差 =減數 差+減數=被減數 3、乘法:求幾個相同加數的和的簡便運算叫做乘法。一個因數× 一個因數 =積 一個因數=積÷另一個因數 在乘法里,0和任何數相乘都得0, 1和任何數相乘都的任何數。 4、除法:已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。 在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。 乘法和除法互為逆運算。 在除法里,0不能做除數。 被除數÷除數=商 除數=被除數÷商 被除數=商×除數 (二)運算定律 1、加法運算定律 ⑴ 加法交換律:兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。 ⑵ 加法結合律:三個數相加,先把前兩個數相加,再加上第三個數;或者先把后兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。 2、乘法運算定律 ⑴ 乘法交換律:兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。 ⑵ 乘法結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把后兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。 ⑶乘法分配律:兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘,再把兩個積相加。 即(a+b)×c=a×c+b×c 。 ⑷ 乘法分配律擴展:兩個數的差與一數相乘,可以先把它們與這個數分別相乘,再相減。 即(a-b)×c=a×c-b×c 3、減法運算定律 ⑴ 從一個數里連續(xù)減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。 ⑵ 一個數連續(xù)減去兩個數,可以先減去第二個減數,再減去第一個減數,即a-b-c=a-c-b。 4、除法運算定律 ⑴ 一個數連續(xù)除以兩個數,可以除以這兩個數的集,即a÷b÷c=a÷(b×c)。 ⑵ 一個數連續(xù)除以兩個數,可以先除以第二除數,再除以第一個除數,即a÷b÷c=a÷c÷b。 5、其它 a-b+c=a+c-b ; a-b+c=a+(b-c); a÷b×c=a×c÷b; a÷b×c=a÷(b÷c)。 6、積的變化規(guī)律:在乘法中,一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮?。┫嗤谋稊?。 推廣:一個因數擴大A倍,另一個因數擴大B倍,積擴大AB倍。 一個因數縮小A倍,另一個因數縮小B倍,積縮小AB倍。 7、商不變性質: 在除法中,被除數和除數同時擴大(或縮?。┫嗤谋稊?,商不變。 a÷b=(a×m) ÷(b×m)=(a÷m) ÷(b÷m) m≠0 推廣:被除數擴大(或縮小)A倍,除數不變,商也擴大(或縮?。〢倍。 被除數不變,除數擴大(或縮?。〢倍,商反而縮?。ɑ驍U大)A倍。 利用積的變化規(guī)律和商不變規(guī)律性質可以使一些計算簡便。但在有余數的除法中要注意余數。如:8500÷200= 可以把被除數、除數同時縮小100倍來除,即85÷2= ,商不變,但此時的余數1是被縮小100被后的,所以還原成原來的余數應該是100。 (五)計算方法 1、整數加法計算法則:相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。 2、整數減法計算法則:相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合并在一起,再減。 3、整數乘法計算法則:先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然后把各次乘得的數加起來。 4、整數除法計算法則:先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數要小于除數。 5、小數乘法法則:先按照整數乘法的計算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用“0”補足。 6、除數是整數的小數除法計算法則:先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添“0”,再繼續(xù)除。 7、除數是小數的除法計算法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補“0”),然后按照除數是整數的除法法則進行計算。 8、同分母分數加減法計算方法:同分母分數相加減,只把分子相加減,分母不變。 9、異分母分數加減法計算方法:先通分,然后按照同分母分數加減法的的法則進行計算。 10、帶分數加減法的計算方法:整數部分和分數部分分別相加減,再把所得的數合并起來。 11、分數乘法的計算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。 12、分數除法的計算法則:甲數除以乙數(0除外),等于甲數乘乙數的倒數。 (六) 運算順序 1、整數、小數、分數四則運算的運算順序和整數四則運算順序相同。 2、沒有括號的混合運算:同級運算從左往右依次運算;兩級運算先算乘、除法,后算加、減法。 3、有括號的混合運算:先算小括號里面的,再算中括號里面的,最后算括號外面的。 四、解決問題 (一)整數和小數的應用 1、簡單應用題 (1)簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。 2、復合應用題 有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。 (1) 解答加法應用題: a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。 b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。 (2) 解答減法應用題: a求剩余的應用題:從已知數中去掉一部分,求剩下的部分。 b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。 c求比一個數少幾的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數是多少。 (3) 解答乘法應用題: a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。 b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。 (4) 解答除法應用題: a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。 b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。 C 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。 d已知一個數的幾倍是多少,求這個數的應用題。 3、典型應用題 具有獨特的結構特征的和特定的解題規(guī)律的復合應用題,通常叫做典型應用題。 (1)歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。 解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然后以它為標準,根據題目的要求算出結果。 數量關系式:單一量×份數=總數量(正歸一) 總數量÷單一量=份數(反歸一) 例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米,需要多少天? 分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天) (2)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。 數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量 單位數量×單位個數÷另一個單位數量= 另一個單位數量。 例:修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米? 分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米) (3)和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。 解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然后再求另一個數。 解題規(guī)律:(和+差)÷2 = 大數 大數-差=小數 (和-差)÷2=小數 和-小數= 大數 例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人? 分析:從乙班調 46 人到甲班,對于總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人) (4)和倍問題:已知兩個數的和及它們之間的倍數關系,求兩個數各是多少的應用題,叫做和倍問題。 解題關鍵:找準標準數(即1倍數)一般說來,題中說是“誰”的幾倍,把誰就確定為標準數。求出倍數和之后,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標準數的倍數關系,再去求另一個數(或幾個數)的數量。 解題規(guī)律:和÷倍數和=標準數 標準數×倍數=另一個數 例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛? 分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。 列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛) (5)差倍問題:已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。 解題規(guī)律:兩個數的差÷(倍數-1 )= 標準數 標準數×倍數=另一個數。 例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米? 分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標準數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。 (6)行程問題:關于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規(guī)律解答。 解題關鍵及規(guī)律: 同時同地相背而行:路程=速度和×時間。 同時相向而行:相遇時間=速度和×時間 同時同向而行(速度慢的在前,快的在后):追及時間=路程速度差。 同時同地同向而行(速度慢的在后,快的在前):路程=速度差×時間。 例 甲在乙的后面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米,甲幾小時追上乙? 分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。 已知甲在乙的后面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時) (7)雞兔問題:已知“雞兔”的總頭數和總腿數。求“雞”和“兔”各多少只的一類應用題。通常稱為“雞兔問題”又稱雞兔同籠問題 解題關鍵:解答雞兔問題一般采用假設法,假設全是一種動物(如全是“雞”或全是“兔”,然后根據出現的腿數差,可推算出某一種的頭數。 解題規(guī)律:(總腿數-雞腿數×總頭數)÷一只雞兔腿數的差=兔子只數 兔子只數=(總腿數-2×總頭數)÷2 如果假設全是兔子,可以有下面的式子: 雞的只數=(4×總頭數-總腿數)÷2 兔的頭數=總頭數-雞的只數 例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只? 兔子只數 ( 170-2 × 50 )÷ 2 =35 (只) 雞的只數 50-35=15 (只) (二)分數和百分數的應用 1、分數加減法應用題: 分數加減法的應用題與整數加減法的應用題的結構、數量關系和解題方法基本相同,所不同的只是在已知數或未知數中含有分數。 2、分數乘法應用題: 是指已知一個數,求它的幾分之幾是多少的應用題。 特征:已知單位“1”的量和分率,求與分率所對應的實際數量。 解題關鍵:準確判斷單位“1”的量。找準要求問題所對應的分率,然后根據一個數乘分數的意義正確列式。 3、分數除法應用題: 求一個數是另一個數的幾分之幾(或百分之幾)是多少。 特征:已知一個數和另一個數,求一個數是另一個數的幾分之幾或百分之幾?!耙粋€數”是比較量,“另一個數”是標準量。求分率或百分率,也就是求他們的倍數關系。 解題關鍵:從問題入手,搞清把誰看作標準的數也就是把誰看作了“單位一”,誰和單位一的量作比較,誰就作被除數。 甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標準量,用甲除以乙。 甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關系式(甲數減乙數)/乙數或(甲數減乙數)/甲數。 已知一個數的幾分之幾(或百分之幾 ) ,求這個數。 特征:已知一個實際數量和它相對應的分率,求單位“1”的量。 解題關鍵:準確判斷單位“1”的量把單位“1”的量看成x根據分數乘法的意義列方程,或者根據分數除法的意義列算式,但必須找準和分率相對應的已知實際 數量。 4、常用的百分率 發(fā)芽率=發(fā)芽種子數/試驗種子數×100% 出油率= 小麥的出粉率= 面粉的重量/小麥的重量×100% 及格率= 產品的合格率=合格的產品數/產品總數×100% 達標率= 職工的出勤率=實際出勤人數/應出勤人數×100% 優(yōu)生率= 命中率= 糖水濃度= 5、工程問題: 是分數應用題的特例,它與整數的工作問題有著密切的聯系。它是探討工作總量、工作效率和工作時間三個數量之間相互關系的一種應用題。 解題關鍵:把工作總量看作單位“1”,工作效率就是工作時間的倒數,然后根據題目的具體情況,靈活運用公式。 數量關系式: 工作總量=工作效率×工作時間 工作效率=工作總量÷工作時間 工作時間=工作總量÷工作效率 工作總量÷工作效率和=合作時間 6、納稅 納稅就是把根據國家各種稅法的有關規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。 繳納的稅款叫應納稅款。 應納稅額與各種收入的(銷售額、營業(yè)額、應納稅所得額 ……)的比率叫做稅率。 7、利息 存入銀行的錢叫做要本金。 取款時銀行多支付的錢叫做利息。 利息與本金的比值叫做利率。 利息=本金×利率×時間 五、常用的數量關系式 1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數 2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數 3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價 5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6、加數+加數=和 和-一個加數=另一個加數 7、被減數-減數=差 被減數-差=減數 差+減數=被減數 8、因數×因數=積 積÷一個因數=另一個因數 9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數 10、路程=速度×時間 總價=單價×數量 工作總量=工作效率×工作時間 速度=路程÷時間 單價=總價÷數量 工作效率=工作總量÷工作時間 時間=路程÷速度 數量=總價÷單價 工作時間=工作總量÷工作效率 幾倍量=1倍量×倍數 總產量=單產量×面積數 總數=平均數×總份數 1倍量=幾倍量÷倍數 單產量=總產量÷面積數 平均數=總數÷總份數 倍數=幾倍量÷1倍量 面積數=總產量÷單產量 總份數=總數÷平均數 總量=用去的量+剩下的量 比較量=單位“1”的量×比較量的對應分率 用去的量=總量-剩下的量 單位“1”的量=比較量÷比較量的對應分率 剩下的量=總量-用去的量 比較量的對應分率= 比較量÷單位“1”的量 11、圖上距離:實際距離=比例尺 圖上距離÷比例尺=實際距離 實際距離×比例尺=圖上距離 13、利息 利息=本金×利率×時間 第二部分 式與方程 一、用字母表示數 1、用字母表示常見的數量關系、運算定律和性質、幾何形體的計算公式 ⑴ 常見的數量關系 ① 路程用s表示,速度v用表示,時間用t表示,三者之間的關系: s=vt v=s÷t t=s÷v ② 總價用a表示,單價用b表示,數量用c表示,三者之間的關系: a=bc b=a÷c c=a÷b ⑵ 運算定律和性質 加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c) 乘法交換律:ab=ba 乘法結合律:(ab)c=a(bc) 乘法分配律:(a+b)c=ac+bc 減法的性質:a-(b+c) =a-b-c 2、用字母表示數的寫法 ① 數字和字母、字母和字母相乘時,乘號可以記作“.”,或者省略不寫;數與數相乘,乘號不能省略。 ② 當“1”與任何字母相乘時,“1”省略不寫。 ③ 數字和字母相乘時,將數字寫在字母前面。 ④ 在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。 二、簡易方程 1、等式:表示相等關系的式子叫等式。 2、方程:含有未知數的等式叫做方程。 判斷一個式子是不是方程應具備兩個條件:一是含有未知數;二是等式。所以,方程一定是等式,但等式不一定是方程。 3、方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。 4、解方程 :求方程的解的過程叫做解方程。 四、比和比例 1、比的意義和性質 ⑴ 比的意義:兩個數相除又叫做兩個數的比。 “:”是比號,讀作“比”。比號前面的數叫做比的前項,比號后面的數叫做比的后項。比的前項除以后項所得的商,叫做比值。 同除法比較,比的前項相當于被除數,后項相當于除數,比值相當于商。 比值通常用分數表示,也可以用小數表示,有時也可能是整數。 比的后項不能是零。 根據分數與除法的關系,可知比的前項相當于分子,后項相當于分母,比值相當于分數值。 ⑵ 比的性質 比的前項和后項同時乘上或者除以相同的數(0除外),比值不變,這叫做比的基本性質。 ⑶ 求比值和化簡比 求比值的方法:用比的前項除以后項,它的結果是一個數值可以是整數,也可以是小數或分數。 根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡比,即前、后項是互質的數。 ⑷ 比例尺 圖上距離:實際距離=比例尺 要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。 線段比例尺:在圖上附有一條注有數目的線段,用來表示和地面上相對應的實際距離。 ⑸ 按比分配 在工業(yè)生產和日常生活中,常常要把一個數量按照一定的比來進行分配,這種分配方法通常叫“按比分配”。 按比分配的有關習題,在解答時,要善于找準分配的總量和分配的比,然后把分配的比轉化成分數或份數來進行解答。 方法:首先求出各部分占總量的幾分之幾,然后求出總數的幾分之幾是多少。 2、比例的意義和性質 ⑴ 比例的意義 :表示兩個比相等的式子叫做比例。 組成比例的四個數,叫做比例的項。 兩端的兩項叫做外項,中間的兩項叫做內項。 ⑵ 比例的性質 在比例里,兩個外項的積等于兩個兩個內向的積。這叫做比例的基本性質。 ⑶ 解比例 根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。求比例中的未知項,叫做解比例。 3、正比例和反比例 ⑴ 成正比例的量 兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。 用字母表示y/x=k(一定) ⑵ 成反比例的量 兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。 用字母表示x×y=k(一定) 4、比例應用題 正、反比例應用題的解題策略: ① 審題,找出題中相關聯的兩個量 ② 分析,判斷題中相關聯的兩個量是成正比例關系還是成反比例關系。 ③ 設未知數,列比例式 ④ 解比例式 ⑤ 檢驗,寫答語 第三部分 度量 一、概述 1、事物的多少、長短、大小、輕重、快慢等,這些可以測定的客觀事物的特征叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。 2、高級單位與低級單位是相對的.比如,"米"相對于分米,就是高級單位,相對于千米就是低級單位。 二、長度常用單位 公里、千米(km) 米(m) 分米(dm) 厘米(cm) 毫米(mm) 三、面積:就是物體所占平面的大小。立體物體的表面的多少的測量一般稱表面積。 常用的面積單位 平方毫米 平方厘米 平方分米 平方米 平方千米 四、體積和容積體積,就是物體所占空間的大小。 容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。 單位 ①常用的體積單位:* 立方米 * 立方分米 * 立方厘米 ②常用的容積單位:* 升 * 毫升 五、常用的質量單位 * 噸 t * 千克 kg * 克 g 六、常用時間單位:年 、 月 、 日 、 時 、 分、 秒 七、常用的貨幣單位:元 、 角 、 分 七、常用單位換算 1、長度單位換算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 2、面積單位換算 1平方厘米 =100 平方毫米 1平方分米=100平方厘米 1平方米 =100 平方分米 1公傾 =10000 平方米 1平方公里 =100 公頃 3、體(容)積單位換算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 4、重量單位換算 1噸=1000 千克 1千克=1000克 1千克=1公斤 5、人民幣單位換算 1元=10角 1角=10分 1元=100分 6、時間單位換算 1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月,小月(30天)的有:4\6\9\11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1分=60秒 1時=60分 1時=3600秒 閏年年份是4的倍數,整百年份須是400的倍數。 第四部分 簡單的統(tǒng)計 一、統(tǒng)計表 (一)種類 * 單式統(tǒng)計表:只含有一個項目的統(tǒng)計表。 * 復式統(tǒng)計表:含有兩個或兩個以上統(tǒng)計項目的統(tǒng)計表。 * 百分數統(tǒng)計表:不僅表明各統(tǒng)計項目的具體數量,而且表明比較量相當于標準量的百分比的統(tǒng)計表。 (二)統(tǒng)計步驟:搜集數據、整理數據、 分析數據 二、統(tǒng)計圖 (一)種類 1、條形統(tǒng)計圖 優(yōu)點:很容易看出各種數量的多少。 2、折線統(tǒng)計圖 優(yōu)點:不但可以表示數量的多少,而且能夠清楚地表示出數量增減變化的情況。 3、扇形統(tǒng)計圖 用整個圓的面積表示總數,用扇形面積表示各部分所占總數的百分數。 優(yōu)點:很清楚地表示出各部分同總數之間的關系。 第五部分 幾何的初步知識 一、線和角 1、線 ⑴ 直線:直線沒有端點;長度無限;過一點可以畫無數條,過兩點只能畫一條直線。 ⑵ 射線:射線只有一個端點;長度無限。 ⑶ 線段:線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。 ⑷ 平行線:在同一平面內,不相交的兩條直線叫做平行線。 兩條平行線之間的垂線長度都相等。 ⑸ 垂線: 兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。 從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。 2、角:從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。 角的分類 ① 銳角:小于90°的角叫做銳角。 ② 直角:等于90°的角叫做直角。 ③ 鈍角:大于90°而小于180°的角叫做鈍角。 ④ 平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180°。 ⑤ 周角:角的一邊旋轉一周,與另一邊重合。周角是360°。 二、平面圖形 1、三角形:由三條線段首尾相連圍成的圖形。內角和是180度;三角形具有穩(wěn)定性;從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,一個三角形有三條高。 ⑵ 計算公式:s=ah÷2 ⑶ 分類 ① 按角分 A、銳角三角形 :三個角都是銳角。 B、直角三角形 :有一個角是直角。等腰三角形的兩個銳角各為45度,它有一條對稱軸。 C、鈍角三角形:有一個角是鈍角。 ② 按邊分 A、不等邊三角形:三條邊長度不相等。 B、等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。 C、等邊三角形:三條邊長度都相等;三個內角都是60度;有三條對稱軸。 2、四邊形:是由四條線段圍成的圖形。 任意四邊形的內角和是360度。 只有一組對邊平行的四邊形叫梯形。 兩組對邊分別平行的四邊形叫平行四邊形,它容易變形。長方形、正方形是特殊的平行四邊形;正方形是特殊的長方形。 ⑵分類 ① 長方形 A、特征:對邊相等,4個角都是直角的四邊形。有兩條對稱軸。 B、計算公式:c=2(a+b) s=ab ② 正方形 A、特征:四條邊都相等,四個角都是直角的四邊形。有4條對稱軸。 B、計算公式:c=4a s=a ③ 平行四邊形 A、特征:兩組對邊分別平行的四邊形;相對的邊平行且相等;對角相等;相鄰的兩個角的度數之和為180度;平行四邊形容易變形。 B、計算公式:s=ah ④ 梯形 A、特征:只有一組對邊平行的四邊形;中位線等于上下底和的一半;等腰梯形有一條對稱軸。 B、計算公式:s=(a+b)h/2=mh 3、圓 :圓是平面上的一種曲線圖形。 圓中心的一點叫做圓心。一般用字母o表示。 半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用r表示。 在同一個圓里,有無數條半徑,每條半徑的長度都相等。 通過圓心并且兩端都在圓上的線段叫做直徑。一般用d表示。 同一個圓里有無數條直徑,所有的直徑都相等。同圓或等圓的直徑都相等。 同一個圓里,直徑等于兩個半徑的長度,即d=2r。 圓的大小由半徑決定。 圓有無數條對稱軸。 圓心確定圓的位置,半徑確定圓的大小。 ⑵圓的周長:圍成圓的曲線的長叫做圓的周長。 把圓的周長和直徑的比值叫做圓周率。用字母∏表示。 ⑶圓的面積:圓所占平面的大小叫做圓的面積。 ⑷計算公式:d=2r r=d÷2 c=πd c=2πr s=πr2 4、扇形 ⑴ 扇形的認識 一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。(半圓與直徑的組合也是扇形)。顯然, 它是由圓周的一部分與它所對應的圓心角圍成。 圓上AB兩點之間的部分叫做弧,讀作“弧AB”。 頂點在圓心的角叫做圓心角。 在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關。 扇形有一條對稱軸,是軸對稱圖形。 5、環(huán)形 ⑴特征:由兩個半徑不相等的同心圓相減而成,有無數條對稱軸。 ⑵ 計算公式:s= (R2-r2) 6、軸對稱圖形 ① 如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。 ② 線段、角、等腰三角形、長方形、正方形等都是軸對稱圖形,他們的對稱軸條數不等: 正方形有4條對稱軸, 長方形有2條對稱軸。 等腰三角形有2條對稱軸,等邊三角形有3條對稱軸。 等腰梯形有一條對稱軸,圓有無數條對稱軸。 菱形有4條對稱軸,扇形有一條對稱軸。 三、立體圖形 (一)長方體 1、特征:個面都是長方形(有時有兩個相對的面是正方形)。 相對的面面積相等,12條棱相對的4條棱長度相等。 有8個頂點。 相交于一個頂點的三條棱的長度分別叫做長、寬、高。兩個面相交的邊叫做棱。 三條棱相交的點叫做頂點。 把長方體放在桌面上,最多只能看到三個面。 長方體或者正方體6個面的總面積,叫做它的表面積。 2、計算公式:s=2(ab+ah+bh) V=sh V=abh (二)正方體 1、特征 六個面都是正方形 ,六個面的面積相等, 12條棱,棱長都相等, 有8個頂點, 正方體是特殊的長方體。 2、計算公式:S表=6a2 v=a3 (三)圓柱 1、圓柱的認識 圓柱的上下兩個面叫做底面。 圓柱有一個曲面叫做側面。 圓柱兩個底面之間的距離叫做高 。 2、計算公式:s側=ch s表=s側+s底×2 v=sh (四)圓錐 1、圓錐的認識 圓錐的底面是個圓,圓錐的側面是個曲面。 從圓錐的頂點到底面圓心的距離是圓錐的高。 測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。 把圓錐的側面展開得到一個扇形。 2、計算公式:v= sh÷3 四、周長和面積 1、平面圖形一周的長度叫做周長。 2、平面圖形或物體表面的大小叫做面積。 3、常見圖形的周長和面積計算公式 五、小學數學圖形計算公式 1、長度公式: 半徑=直徑÷2=周長÷圓周率÷2 r=d÷2 r=c÷π÷2 直徑=半徑×2=周長÷圓周率 d=2r d=c÷π 圓周長=2×圓周率×半徑=圓周率×直徑 c=πd c=2πr 正方形周長=邊長×4 c=4a 長方形周長=(長+寬)×2 c=2(a+b) 2、面積公式 正方形面積=邊長×邊長 s=a2 長方形面積=長×寬 s=ab 平行四邊形面積=底×高 s=ah 三角形面積= ×底×高 s= ah 梯形面積= ×(上底+下底)×高 s= (a+b)h 圓面積=圓周率×半徑的平方 s=πr2 正方體表面積=棱長×棱長×6 s=6a 長方體表面積=(長×寬+寬×高+長×高)×2 s=2(ab+bh+ah) 圓柱體側面積=底面周長×高 s=ch 圓柱體表面積=側面積+底面積×2 s=ch+2πr 3、體積公式 正方體體積=棱長×棱長×棱長 v=a 長方體體積=長×寬×高 v=abh 圓柱體體積=底面積×高 v=sh 圓錐體體積= 底面積×高 v= sh÷3 11- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 人教版 小學 數學知識 總結 大全
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.zhongcaozhi.com.cn/p-1547693.html