2756 刮板輸送機2
2756 刮板輸送機2,輸送
1中文翻譯 應(yīng)用熱工三維制動器瞬態(tài)溫度場的緊急制動為了準確掌握在葫蘆的緊急制動蹄片的溫度場的變化規(guī)律,制動時,三維(3- D)的瞬態(tài)溫度場的理論模型,根據(jù)熱傳導(dǎo),能量轉(zhuǎn)換和分布規(guī)律的理論,以及礦山提升機運行的緊急情況制動。一種溫度場的解析推導(dǎo)了采用積分變換法。此外,溫度模擬實驗場進行了溫度場和溫度梯度和內(nèi)部的變化規(guī)律獲得。同時,通過模擬葫蘆的緊急制動條件下,實驗測量制動蹄的溫度,同時進行。結(jié)果發(fā)現(xiàn),通過比較模擬結(jié)果與實驗數(shù)據(jù),即三維瞬態(tài)溫度場模型的制動蹄片是有效和實用,和分析解決方案解決了積分變換方法是正確的。1、簡介提升機的緊急制動是一個轉(zhuǎn)變過程機械能轉(zhuǎn)化為對制動摩擦熱能量。該礦山提升機緊急制動過程中具有以下特點高速,重載,而這種情況更糟糕的是比剎車條件的車輛,火車等[1-3,6,10,11]。以前對剎車片的溫度場的重點工作[1-4,10,12,13]。特別是,由于制動蹄是固定的過程中緊急制動,所以有更強烈的溫度上升制動器蹄片。制動蹄片是一種復(fù)合材料,以及溫度上升,從摩擦產(chǎn)生的熱能是最重要的因素影響制動器蹄片摩擦磨損性能同制動安全性能[5-10]。因此,有必要調(diào)查關(guān)于制動器蹄片的溫度場來調(diào)查剎車片的。制動器蹄片的溫度場目前的理論模型基于一維或二。 Afferrante[11]建立了一個二維(2- D)的多層模型來估計瞬態(tài)演化在多盤離合器溫度擾動和在操作過程中剎車。納吉[12]建立了一維數(shù)學(xué)模型來描述一個制動熱行為系統(tǒng)。 Yevtushenko 和 Ivanyk[13]推導(dǎo)了瞬態(tài)溫度場的一軸對稱熱傳導(dǎo)問題2三維坐標。這是困難的這些模式,以反映制動器蹄片真實溫度場的三維幾何圖形。解決的方法剎車片的三維瞬態(tài)溫度場集中有限元法[1-3,14-17],近似集成的方法[4,18],格林函數(shù)法 [12]和 Laplace 變換方法[9,13] 等,前三者方法是數(shù)值求解方法和低是相對的準確性。例如,有限元方法可以解決復(fù)雜熱傳導(dǎo)問題,但計算精度解決方案是比較低,這是影響網(wǎng)密度,步長等。雖然拉普拉斯變換解決方法是分析方法,它是難以解決的方程復(fù)雜邊界的熱傳導(dǎo)。因此,所謂的解析解積分變換方法通過[19],因為它是解決問題的合適非均質(zhì)瞬態(tài)熱傳導(dǎo)。為了掌握制動器蹄片的溫度變化規(guī)律在葫蘆的緊急制動領(lǐng)域,提高安全可靠性制動,一個3- D 的制動器蹄片瞬態(tài)溫度場研究了在積分變換方法的基礎(chǔ)上,和有效性證明了數(shù)值模擬和實驗研究。2、理論分析2、1理論模式圖1顯示了葫蘆的制動摩擦副示意圖。為了分析制動器蹄片的三維溫度場,圓柱坐標(r, ?,z)是通過結(jié)構(gòu)來描述幾何如圖所示。 2,其中 R 是剎車點2之間的距離和制動盤的旋轉(zhuǎn)軸; ?為圓心角;這三者之間的制動蹄摩擦點和表面的距離。至于幾何結(jié)構(gòu)參數(shù)和圖2所示。它看到, .0,,lzbra???顯然,這是制動器蹄片的溫度 T 是函數(shù)的圓柱坐標( r, ,z)和時間(t) 。根據(jù)熱理論傳導(dǎo),三維瞬態(tài)熱傳導(dǎo)微分方程是獲得如下: tazrTr ??????11222?(1)其中 a 是熱擴散, )/(c???; 是熱導(dǎo)率; ?為密度; c是比熱容量。2.2、邊界條件2.2.1、熱流量及其分布系數(shù)這是在緊急制動產(chǎn)生的摩擦熱難要在短時間內(nèi)發(fā)出,因此它幾乎完全吸收剎車對。由于制動器蹄片是固定的,摩擦溫度多面大幅上升,這最終會影響其摩擦學(xué)更嚴重的行為。為了掌握真實該制動器蹄片溫度場在緊急制動時,熱流量及其分布系數(shù)摩擦表面必須確定準確。根據(jù)操作緊急制動,條件假設(shè)制動速度光盤隨時間呈線性,熱流量,得到公式 )/1()/1(),( 0000 trwpktpktrqs ???????????(2)其中 q 為熱摩擦表面流動; P 是比壓之間的制動對; oV的和 0W是最初的線性和角速度在制動盤; l 是剎車副之間的摩擦系數(shù); 0t是整個制動時間,k 是熱分布流系數(shù)。假設(shè)摩擦熱量轉(zhuǎn)移到完全制動運動鞋和制動盤,分布的熱流量系數(shù)根據(jù)得到的一維熱傳導(dǎo)分析。圖。 3顯示了聯(lián)系兩個半平面示意圖。在一維瞬態(tài)熱傳導(dǎo)的條件,對摩擦表面(z = 0處)的溫度上升,得到公式(3)其中 q 為在平面吸收一半熱流。和熱流量是從 Eq 獲得的(4)假設(shè)兩個半飛機具有相同的溫度上升,對摩擦表面,然后在熱流量比進入兩個半平面可表示為其中下標 S 和 D 意味著制動器蹄片和制動盤,分別。根據(jù) Eq。 (5) ,分配系數(shù)熱流根據(jù)這個公式獲得進入制動器蹄片。32.2.2、在邊界系數(shù)對流換熱至于側(cè)面和頂面制動器蹄片,得到他們的對流換熱系數(shù),分別按自然對流換熱邊界條件直立板和橫板圖1-制動摩擦副示意圖 圖2、三維幾何模型的制動器蹄片。圖3、兩個半平面示意圖4其中下標 L 和 U 代表側(cè)面和頂部表面,h 分別為對流換熱系數(shù)在邊界上,DT是之間的溫差邊界和環(huán)境,L 是較短維邊界。2.2.3、初始和邊界條件制動器蹄片之間的接觸和制動盤表面受到不斷熱流在緊急制動過程 qs 的。制動蹄片的邊界都用空氣的自然對流。邊界和初始條件可以表示為其中是 0T制動器蹄片在 t=0的初始溫度。2.3。積分變換求解方法積分變換的方法有兩個解決問題的步驟。首先,只有作出適當?shù)姆e分變換空間變量,熱傳導(dǎo)原方程可以簡化由于考慮到時間與常微分方程變量 t 然后,通過采取逆變換關(guān)于解常微分方程的解析解在關(guān)于空間和時間變量溫度場可以得到的。積分變換方法應(yīng)用于求解方程。 (1 )邊界條件方程。 (8 ) 。用積分變換有關(guān)空間變量(r, ?,z)的反過來,他們可能會偏微分方程是''消滅“。編寫公式來表示的運作采取逆變換與積分變換方面到 Z,這些被定義為5其中 是 的積分變化, 是特征函數(shù)。提交 Eq,獲得以下方程:以同樣的方式,逆變換與積分變換關(guān)于 ?和 r 分別定義最后,根據(jù)上面的積分變換,方程1) (8 )可以簡化為如下:6解決方案 可以獲得通過解式。(16)。以反變換關(guān)于根據(jù) Eqs。( 九)、(12)和(14), 的解析制動器的三維瞬態(tài)溫度場分布3.仿真和實驗圖 4 顯示了一半的制動器剖面樣品。線 c、d 的中心線 ,底線的橫截面上的分別。樣品的尺寸是:一個= 137.5 mm,b = = 1 / 6 毫米, 半 162.5 rad,l = 6 毫米。閘瓦的材料和盤式制動器是石棉和 16Mn,分別。他們的參數(shù)和條件的緊急制動見表 1。假設(shè)摩擦系數(shù)和制動襯墊比壓在緊急制動過程是不變的。基于以上分析模型, 模擬閘瓦的三維溫度場進行與到…= 7.23 s。溫度的變化規(guī)律圖 4 把剖面的一半剎車蹄的樣品7表 1 剎車副的基本參數(shù)和緊急制動條件與內(nèi)部溫度梯度場進行了分析。什么是顯示在無花果里都是片面的。5 - 9 的仿真結(jié)果相符合。什么是顯示在圖 5 是閘瓦的三維溫度場當時間 7.23 s。它被認為是從圖 5的最高溫度是 396.534 閘瓦制動,其 K 后最低溫度和熱是能量 293 歐幾里得主要集中圖 5 三維溫度場的剎車蹄(t = 7.23 s)8圖 6 溫度的改變對摩擦表面與時間 t圖 7 溫度的改變對線 d 用時間 t9圖 8 溫度梯度的變化與時間線 c t圖 9 溫度的改變不同深度隨時間的線 c t層上的摩擦表面的熱影響層(命名),既體現(xiàn)了熱 diffusibility 閘瓦的很差。為了靈便的溫度變化規(guī)律的摩擦表面,在緊急制動過程的摩擦表面的變化的溫度與時間t 進行了模擬。什么是在圖 6 中顯示,揭示了摩擦表面的溫度 ,然后增加首先減小的趨勢。這是因為,高速度的盤式制動器是在開始的時候 ,結(jié)果造成大 heat-flow而對流換熱系數(shù)低邊界上的那一刻,所以溫度增加;后期的制動的 heatflow 量減少的速度,而對流換熱系數(shù)高,由于溫差較大的差異,從而導(dǎo)致減少邊界溫度。無花果。6、7,反映了溫度變化規(guī)律進行了徑向尺寸: 在外面的溫度高于閘瓦里面,并且外面的溫度變化較大。10圖 8 論證了溫度梯度的變化規(guī)律的方向沿 z。最高溫度梯度的摩擦層是由3.739 105 K / m 與方向會急驟下降沿 z。最低價值只是 4.597 1011 K / m。在開始的時候,溫度梯度的熱影響層是最高,而溫度接近周圍的溫度。象剎車的推移,溫度梯度漸次降低,直到最后。圖 9 所示的是變化的溫度不同深度隨時間的線 c t。溫度會急驟下降隨著 z,、邊界條件等影響有窩內(nèi)部溫度。溫度增高但 z P0.0006 米。一旦 z 是由 0.002 米, 制動過程中溫度的差別小于 3 k .這表明, 熱能集中在熱影響層,其厚度是關(guān)于 0.002 米。為了證明的解析模型,實驗進行了摩擦試驗機,如圖 10。實驗原理如下:當剎車開始,兩種制動蹄制動圓盤也要被推遲到一定壓力 p 和溫度點 e 在摩擦表面熱電偶測量。因為試樣厚度太厚,而且摩擦試驗機的結(jié)構(gòu)是有限的 ,很難固定熱電偶在剎車蹄。因此,熱電偶是固定的直接對盤式制動器是封閉 ,點 e 列圖。10。圖11 顯示的溫度變化規(guī)律的兩種情況下點在 e 的緊急制動。從圖 11,觀察點 e 增加時的溫度,在第一,然后減少,最高溫度低于, 通過仿真實驗數(shù)據(jù)也落后。在圖 11a,模擬溫度達到最大 427.14 凱西在 3.6 s 而來的實驗數(shù)據(jù)和最大 435.65 凱西在 3.8 秒。在圖 11b,仿真結(jié)果達到最大 469.55 凱西在4.5 s 而來到 479.68 實驗數(shù)據(jù) K 在 5 秒。它被認為是從圖 11,通過實驗測量溫度低于仿真結(jié)果,在第一,然后它相反的。這是因為熱電偶本身的能量吸收熱量閘瓦在開始,然后將其釋放到剎車蹄當溫度下降。對比實驗數(shù)據(jù)和仿真結(jié)果表明 ,仿真結(jié)果表明,兩者吻合較好,誤差的實驗,他們的最高溫度是 1.99%圖 10 圖解的摩擦測試儀。11圖 11a 溫度的變化規(guī)律與時刻 t 的 e 點(p = 1.38 = 0 - 1 兆帕,證明米/秒)。圖 11b 溫度的變化規(guī)律與時刻 t 的 e 點(p = 1.5895%兆帕, 證明=長 1 - 2.5 米/秒)。和 2.16%,分別。這表明,解析解的三維瞬態(tài)溫度場是正確的。4.結(jié)論(1)的理論模型建立了三維瞬態(tài)溫度場的理論根據(jù)熱傳導(dǎo)及緊急制動條件的礦山提升機。這個積分變換方法應(yīng)用于解決的理論模型,并對溫度場的解析解,推導(dǎo)出。這表明,積分變換方法是有效解決這一問題的三維瞬態(tài)溫度場。(2)基于解析解的理論模型,并采用數(shù)值分析模擬溫度分布的變化規(guī)律下緊急制動狀態(tài)。仿真結(jié)果表明:摩擦表面溫度的增加降低 ;首先,然后在開始的溫12度梯度的熱影響層的最高,其次是溫度增加迅速,正如制動過程正在進行中,溫度梯度溫度的增加呈減少趨勢;窩;邊界條件影響了內(nèi)部溫度上升;熱能量都集中在熱影響層,其厚度約 2 毫米。(3) 實驗數(shù)據(jù)與仿真結(jié)果吻合良好,誤差對他們的最高溫度是大約 2%,這證明了積分變換方法的正確性求解理論模型的三維瞬態(tài)溫度場。解析模型能夠反映出的變化規(guī)律閘瓦的三維瞬態(tài)溫度場在緊急剎車。出處本項目是支持的重點工程,中國教育部(批準號 :)資助 107054)和程序為新世紀優(yōu)秀人才(批準號:) 資助的大學(xué)。 NCET-04-0488)。參考[1] y .楊、江康鈺周、數(shù)值模擬研究的三維熱應(yīng)力場與復(fù)雜邊界問題, 《工程熱27(3)(2007)487-489。[2] l . j .的歌,Z.Y.李郭的研究;(3)快速有限元的仿真模型,對車輛制動熱分析系統(tǒng)仿真學(xué)報,17(12)(2005)。2877 2869-2872。[3] 邱智賢高 ,X.Z.林、瞬態(tài)溫度場分析剎車在引入非完全軸對稱三維模型、期刊的材料加工技術(shù) 129(1 - 3)(2002)513-517。[4] 應(yīng)用文獻的理發(fā)師 ,李,并沒有變法防守的瞬態(tài)熱彈性接觸問題解的速度膨脹法,穿 265(3 勝 4 敗)(2008)402-410。[5] 張亞蘭,Z.C. Z.Y.朱,G.A.陳,實驗研究對摩擦材料行為的葫蘆制動蹄絡(luò)筒機上盤式制動器、潤滑工程(12)(2006)99-101。(在中國)。[6] B.Y.謝會文 ,問:5 張,Y.F.魯李,研究鼓式制動器的摩擦系數(shù)的緊急剎車襯基于課程,交易的中國農(nóng)機協(xié)會 37(12)(2006)33-35。(在中國)。[7] Z.J.王建民, 王建民,d· 李,部件 w·h·魯王,研究應(yīng)用的影響機理的溫升及摩擦系數(shù)對制動閘瓦的礦井提升機的雜志》 《 中國煤炭社會 30(B08 149-152)(2005)。(在中國)。13[8] 王,一個試驗 Z.G.加熱溫度分解的制動摩擦材料的研究[J],遼寧工大雜志》(自然科學(xué)版)24(2)(2005)265-266。(在中國)。[9] 李宗 Matysiak A.A. Yevtushenko,例如,Ivanyk,接觸溫度和摩擦磨損等元素在復(fù)合材料制動、國際期刊上發(fā)表的傳熱、傳質(zhì)的 45(1)(2002)193-199。[10] Mackin T.J.南卡羅來納州,等 K.J.球之間,在《熱裂解盤式制動器、工程失效分析 9(1)(2002)63-67。[11] l . Afferrante,m . Ciavarella 李曉嵐、Demelio,p . Decuzzi frictionally 興奮,瞬態(tài)分析的依據(jù) multi-disk 離合器、制動器的不穩(wěn)定性 ,穿 254(1 - 2)(2003)136-146。[12] m . Naji,m . AL-Nimr、動態(tài)熱行為的制動系統(tǒng)、國際通信在傳熱、28 日(6)(2001)835-845。[14] j . Voldrich 熱彈性不穩(wěn)定,Frictionally 閥瓣 brakes-transient 興奮的問題。在國際期刊上發(fā)表的全部接觸的政權(quán),機械科學(xué) 49(2)(2007)129-137。[15] J.H.彩、章旭昌、李、有限元分析的瞬態(tài)熱彈性行為在磁盤制動器, 穿257(1 - 2)(2004 年)47-58。[16] d . Thuresson、穩(wěn)定的滑動 contact-comparison 銷釘, 并且建立有限元模型,穿 261(7 - 8)(2006)896-904。[17] H.S.氣、陳護升的一天,調(diào)查的閥瓣/襯墊摩擦界面溫度, 穿 262 制動(5 - 6)(2007)505-513。[18] D.P.劉、懸 ,近似計算方法,梅摩擦摩擦溫度在絡(luò)筒機上襯砌雜志》、《中國礦業(yè)大學(xué)及技術(shù) 26(1)(1997)70 - 72。(在中國) 。[19] 《孫子兵法》Z.Y.摩擦學(xué)行為研究對提升機的制動蹄機盤式制動器(論文)、中國礦業(yè)大學(xué),2007 年,pp.103-109 技術(shù)(中文)。(4)。14
收藏