3378 升降舞臺液壓系統(tǒng)的設(shè)計
3378 升降舞臺液壓系統(tǒng)的設(shè)計,升降,舞臺,液壓,系統(tǒng),設(shè)計
一、傳統(tǒng)涂料和現(xiàn)代涂料之間摩擦性質(zhì)的對比畢章 劉小兵 鄧朝暉 和建盟都是美國 CTO6292 機械工業(yè)部門和各大學(xué)的領(lǐng)導(dǎo)。電郵:zhang@enger.ucom.edu簡介:這篇文章對比了傳統(tǒng)材料在固定的摩擦力和空間摩擦力作用下的表面摩擦性質(zhì)。材料成型機械是和微結(jié)構(gòu)理論(材料的粒度)相聯(lián)系的。材料粒度的減少對變形材料的摩擦性質(zhì)的影響正在研究之中。1.說明陶瓷制品的摩擦過程影響已經(jīng)在深入的研究之中。例如:Kirchner 和Brinksmeier,1998Blake,1998)摩擦對材料微型結(jié)構(gòu)的影響同等重要。材料的微型結(jié)構(gòu)就是粒度,它將影響機械性能。例如:硬度和韌性。所以也將影響到陶瓷的摩擦性質(zhì),在這方面幾乎還未取得研究上的突破。Both 和 Tonshoff 在 1993 年研究了不同粒度的鋁在滑動摩擦和靜摩擦方面的摩擦性質(zhì)。對 n-Al2O3/13TiO2 和 n-WC/12Co 兩種涂料來說,其硬度和韌性比同等或粒度大的其他材料來說要髙的多。在塑性變形條件下,材料的硬度是不變的。由于固有位置的移動,塑性變形將會被削弱。粒度越大,越會對材料的移動和塑性變形的束縛。和傳統(tǒng)材料不同的是,材料硬度的降低并不會導(dǎo)致材料韌度的降低。 (由于更大的纖維化,更大的流動壓力和更高的撓曲力) (Jia,1998)對傳統(tǒng)材料和現(xiàn)代材料來說,硬度和韌度的差別是涂料的摩擦性質(zhì)得的影響。大量的砂眼,裂紋和微裂紋是由于膨脹過程對材料中各成分的比率產(chǎn)生了很大的影響。對傳統(tǒng)材料和現(xiàn)代材料來說,硬度和韌度的不同并不僅僅是由于體積的不同。表 1 說明了傳統(tǒng)材料和現(xiàn)代材料(Wc/12Co 和 Al2O3/13TiO2)兩種涂料的成分比率。一般來說,摩擦性質(zhì)可根據(jù)材料的滑移率,材料所承受的摩擦力,樣本表面的結(jié)合率作出預(yù)測。在這篇報告中,傳統(tǒng)的摩擦力,空間摩擦能是作為傳統(tǒng)材料和現(xiàn)代材料對照。除此之外,微電子掃描技術(shù)被用來預(yù)料粒度對材料滑移機械的影響。表 1:傳統(tǒng)材料和現(xiàn)代材料(Wc/12Co 和 Al2O3/13TiO2)的百分比C-Wc/12Co n-Wc/12Co C-Al2O3/13TiO2 n-Al2O3/13TiO2邊界力:82.7 89.6 15.5 20.7 (MPa)粒度:1.3 0.04 2.5 0.05 (um )物體密度:14.2 14.5 3.5-4.0 3.7-4.1 (g/cm3)維氏硬度:12.00 12.50 10.44 10.57 (GPa )韌度:1/2 16.0 16.5 3.3 3.5 (MPa/m)2 結(jié)構(gòu)試驗2.1 預(yù)加工特征圖表傳統(tǒng)材料和現(xiàn)代材料都是由低碳鋼制成,其晶格大小為 25×75×4mm3,晶格在熱膨脹之前將會爆炸。傳統(tǒng)材料和現(xiàn)代材料(Wc/12Co)是用高壓氧流的方法生產(chǎn)的。傳統(tǒng)材料和現(xiàn)代材料(Al2O3/13TiO2)是用等離子下熱膨脹的方法預(yù)制的。所有的涂層都有大約0.5mm 厚的硬殼。材料樣本被削減為 25×4×4mm3。表 1 說明了用微電子掃描技術(shù)對 c/n-Wc/12Co 涂料的觀察結(jié)果。表 1(b)揭示了小粒度的 Wc 在材料鈷的邊界結(jié)合在一邊。用微電子掃描技術(shù)在傳統(tǒng)材料和現(xiàn)代材料(Wc/12Co)中可觀察到大量的裂紋。表 2 說明了在熱膨脹作用下,傳統(tǒng)材料和現(xiàn)代材料(Al2O3/13TiO2)的典型表面特征:孔隙,裂紋,微裂紋和與材料微裂紋垂直相交的部分結(jié)構(gòu)。在現(xiàn)有的摩擦測試以前,為了降低材料的毀壞,外表是帶有 15um 的金鋼粒的砂輪。盡管這種準(zhǔn)備過程在熱膨脹的影響下非常有效,但要浪費時間和精力。2.2 摩擦試驗?zāi)Σ猎囼炇怯糜嬎銠C對精密摩擦機械(Dover Model 956-S)進行了大量的控制而完成的。這臺機器在它的測量軸及 X Y Z 坐標(biāo)方向上都有空間靜止齒輪。測量軸在軸向由0.05um 的竄動,三坐標(biāo)軸向上有 0.1um-25mm 的直線度誤差。機器上安裝的激光干涉儀能夠?qū)?Xx Y Z 軸向上 0.07um 的回路誤差進行反饋。機器上這種回路的剛度為 50N/um。在此項研究中,用金剛摩擦輪(5D 600N 100V)在不同的環(huán)境下(和樣本比較而言)摩擦涂料。輪速設(shè)置為 33m/s 或 3500r/min。為了預(yù)測在殘余應(yīng)力作用下材料滑移率的影響,切深設(shè)置為 2,5,15,30 um 補償率為 1,4,8mm/s(在摩擦試驗中)用冷卻液作為水系統(tǒng)。2.3 后摩擦預(yù)測輪廓曲線用于測量材料在摩擦方向上的成型表面微電子探測儀(JOEL Model Jsm840)用于觀察材料表面。微電子探測儀的觀察部件能夠在材缺陷中區(qū)分出摩擦損壞。 大量的材料缺陷,例如:砂眼,熔融粒子,裂紋和微觀裂紋,在飛濺中都能被檢測出來。因為其中的一些缺陷很容易被誤認(rèn)為摩擦毀壞,所以微電子探測儀能夠在飛濺材料的檢測中探測出這些缺陷。熱膨脹過程中的毛孔一般呈現(xiàn)光滑的邊緣。表 1 和表 2 中,飛濺材料的裂紋和微裂紋彼此相連。依據(jù)摩擦材料,摩擦破壞將能被檢測出來。3 研究成果與發(fā)現(xiàn)3.1 普通摩擦力的對比普通摩擦力在表征摩擦過程中非常重要。表 3 對 c/n-Al2O3/13TiO2 和 c/n-Wc/12Co 在相同摩擦環(huán)境下作用的普通摩擦力進行了對比。對 n-Al2O3/13TiO2 來說,普通摩擦力要高于傳統(tǒng)的配對物。人們也觀察到:對 n-Al2O3/13TiO2 來說,抱剎力要大的多。它表明了:n-Al2O3/13TiO2 和傳統(tǒng)的配對物相比增加了機械性能(硬度和韌度) ,所以 n-Al2O3/13TiO2得到廣泛的應(yīng)用。據(jù)觀測,摩擦中 c/n-Al2O3/13TiO2 具有類似的趨勢:在大的切深下,摩擦力對傳統(tǒng)材料和現(xiàn)代材料的不同影響變得非常小。這也表明在非常低的材料滑移率下,材料粒度對摩擦力的影響非常大。當(dāng)切深或材料滑移率增大時,對摩擦過程干擾儀來說,切深的影響成為次要因素。由于在摩擦?xí)r大的負(fù)前角的從存在,切向摩擦力比普通摩擦力小的多。摩擦力如下:(a)c-Wc/12Co(b) n-Wc/12Co(a) c-AL2O3/13TiO2(b) n-Al2O3/13TiO2表 2:微電子探測儀觀測到了飛濺的 c/n-AL2O3/13TiO2。表 1:微電子探測儀觀測到了飛濺的 c/n-Wc/12Co。222222000000-mm 1200mm表 3 表明了對切向摩擦力 Ft 來說,普通摩擦力的相對數(shù)量級為 Fn,并被定義為:t n F F L=(1)表 4 說明了摩擦力率和切深。摩擦力率對 c/n-AL2O3/13TiO2 來說要高于 c/n-Wc/12Co 。c/n-AL2O3/13TiO2 比 c/n-Wc/12Co 要硬的多。在同樣的摩擦條件下,脆性特征要比 c/n-AL2O3/13TiO2 明顯的多。c/n-Wc/12Co 在摩擦?xí)r,大量的可逆流導(dǎo)致切向摩擦力相對高的多,所以導(dǎo)致摩擦力率降低。據(jù)觀測:當(dāng)摩擦力率對 n-AL2O3/13TiO2 和 n-AL2O3/13TiO2 的不同不重要時,n-AL2O3/13TiO2 的摩擦力率和 c-AL2O3/13TiO2 的摩擦力率有明顯的不同。隨著材料的滑移率或切深降低時,這四種材料的摩擦力率也相應(yīng)的降低。另一方面,這四種材料的摩擦力率相對很窄,這說明了材料滑移機相對于給定的切深范圍并不能變動太大。空間摩擦能 U 被定義為去除單位材料所需的能量??臻g摩擦能是由切向摩擦能推倒出的。F tc wdv Fv u=(2)Vc 指摩擦速度,W 指工件寬度,d 指切深 vf 指反饋率表 5 表明了粒度對空間摩擦能的影響以及空間摩擦能隨著切深的變化。 (a)傳統(tǒng)材料和現(xiàn)代材料 AL2O3/13TiO2(b)傳統(tǒng)材料和現(xiàn)代材料 Wc/12Co 表 3 對作用了傳統(tǒng)材料和普通材料上的普通摩擦力做了對比。0 10 20 3002468Depth of cut, mNormal grinding force, N/mm2Nano.Conv.Wheel speed: 33 m/sFeedrate: 4 mm/sWheel: 600V0 10 20 3002468Depth of cut, mNormal grinding force, N/mm2Nano.Conv.Wheel speed: 33 m/sFeedrate: 4 mm/sWheel: 600VFig. 4 Comparison of grinding force ratio.00 10 20 3036912Depth of cut, mGrinding force ratio, ln-WC/12Coc-WC/12Con-Al2O3/13TiO2c-Al2O3/13TiO2Wheel speed: 33 m/sFeedrate: 4 mm/sWheel: 600VFig. 5 Comparison of specific grinding energy.0 10 20 300.00.51.01.52.02.5Depth of cut, mSpecific grinding energy, 103 J/mm3n-WC/12Coc-WC/12Con-Al2O3/13TiO2c-Al2O3/13TiO2Wheel speed: 33 m/sFeedrate: 4 mm/sWheel: 600V4.四種材料的摩擦能隨著切深漸進的達到極限。在小的切深處,空間摩擦能非常高,這暗示了一部分摩擦能是和構(gòu)件外形有關(guān)(Malkin,1989)一般來說,一部分摩擦能是由構(gòu)件成型時儲存的能量 upl,切削能 usl ch pl sl 組成。即 U=U+U+U (3)除了 uch,空間摩擦能的其他部分來自在小的切深下工件和磨粒的滑動和切削。在比較大的切深下,滑動變得并不重要,構(gòu)件成型也很普遍。然而,切削仍然存在,并影響到摩擦和材料表面。僅僅 uch 完全用于材料滑移和形成新的表面。理論上,表 5 中漸進極限是 uch 對 c/n-AL2O3/13TiO2 進行相對平坦的切割。由于材料的易脆性,切削能并不多。對現(xiàn)代材料來說,小的粒度似乎增大了材料的空間摩擦能。由于現(xiàn)代材料硬度的提高,所需的切削能增多。韌度越大,也意味著通過摩擦形成新的摩擦表面需要更多的能量。3.3 表面粗糙度的對比表面粗糙度是對材料的表面特征的度量。表 6 說明了粒度對材料的表面粗糙度的影響非常重要。和摩擦力和空間摩擦能相反,粒度越小將導(dǎo)致現(xiàn)代材料表面粗糙度的降低。這在材料滑移機械中做了很好的解釋。由微電子探測儀拍攝的圖片可觀察到(表 7 和表 8)當(dāng)可塑流在 n-AL2O3/13TiO2 摩擦中其主要作用時,脆性材料在 n-AL2O3/13TiO2 摩擦中起支配作用。盡管可塑流是 c/n-Wc/12Co 在摩擦中的主要的材料滑移成分,據(jù)觀測晶格或許也很大程度上成因于 c-Wc/12Co 的表面粗糙度。和摩擦力類似,在很大的切深下,傳統(tǒng)材料和現(xiàn)代材料的表面粗糙度之間非常接近。這也說明了,現(xiàn)代材料粒度的減少并不能提高材料的滑移率。3.4 微電子探測儀的表面觀測和對比表 7 表明了在相同的摩擦條件下,微電子探測儀對 c/n-Wc/12Co 的觀測結(jié)果。c-Wc/12Co 的表面分片很多,并且大量的 Wc 微粒能夠被觀測到。和 n-Wc/12Co 表面相比,n-Wc/12Co 表面被一層塑性材料完全覆蓋住了。Wc 微粒邊界幾乎觀測不到。表 8 表明了用微電子探測儀對 c/n-AL2O3/13TiO2 觀測結(jié)果的對比。通過聲音和平坦的表面,來自熱膨脹的缺陷將被觀測到。表 6 表面粗糙度的對比n-WC/12Coc-WC/12Con-Al2O3/13TiO2c-Al2O3/13TiO2Wheel speed: 33 m/sFeedrate: 4 mm/sWheel: 600V0 10 20 3000.30.60.91.21.5Depth of cut, mSurface roughness Ra, 102 nm(a) n-WC/12Co (b) c-WC/12CoFig. 7 SEM observations of ground c/n-WC/12Cocoatings.(a) n-Al2O3/13TiO2 (b) c-Al2O3/13TiO2Fig. 8 SEM observations of ground c/n-Al2O3/13TiO2 coatings.2121210 mm 2121210 mm2121210 mm 2121210 mm5. AL2O3/13TiO2 表明了可塑性流是主要的滑移材料。脆性結(jié)構(gòu)導(dǎo)致 c-AL2O3/13TiO2的表面粗糙。斷片和晶體組織占據(jù)了 c-AL2O3/13TiO2 的大部分。表面觀察結(jié)果表明了表面具有不同的粗糙度。4.總結(jié)從摩擦力的對比中可看出:空間摩擦能成形表面,現(xiàn)代材料和傳統(tǒng)材料的表面形態(tài)??煽偨Y(jié)為:粒度在材料的摩擦滑移中起到了重要的作用。當(dāng)表面粗糙度隨著粒度一起增加時,摩擦力,切削力和空間摩擦能是和粒度密切相關(guān)的。摩擦?xí)r,可塑性流和脆性結(jié)構(gòu)會發(fā)生同樣的變化。摩擦?xí)r,粒度影響著可塑性流的數(shù)量,它支配著材料的最終表面。粒度減少,邊界增大可增強現(xiàn)代材料的硬度和韌度。所以它將影響到這些材料的摩擦。然而,在比較高的材料滑移率的條件下,粒度的影響并不重要。備注:[1]H.P.Kirchner 和 J.C.Conway“用陶瓷滑移學(xué)和材料破壞學(xué)的機理闡明了陶瓷摩擦原理”陶瓷材料的機械加工。[2]H.K.Tonshoff 和 E.Brinksmeier“磨料以及對材料表面溫度的影響” 。[3]P.Blake,T.Bifano,和 R.O.Scattergood“陶瓷材料的應(yīng)用前景” 。[4]P.Roth 和 H.K.Tonshoff“微觀組織對氧化鋁陶瓷材料性質(zhì)的影響” 。[5]K.Jia,T.E.Fischer 和 BGallois“現(xiàn)代材料和傳統(tǒng)材料 Wc-Co 的微觀組織硬度和韌度” 。[6]S.Malkin“摩擦理論,摩擦技術(shù)以及磨料的應(yīng)用” 。
收藏
編號:162518
類型:共享資源
大?。?span id="9xqkl6i" class="font-tahoma">851.99KB
格式:RAR
上傳時間:2017-10-27
50
積分
- 關(guān) 鍵 詞:
-
升降
舞臺
液壓
系統(tǒng)
設(shè)計
- 資源描述:
-
3378 升降舞臺液壓系統(tǒng)的設(shè)計,升降,舞臺,液壓,系統(tǒng),設(shè)計
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。