許廠井煤礦1.5Mta新井設(shè)計(jì)【含CAD圖紙+文檔】
許廠井煤礦1.5Mta新井設(shè)計(jì)【含CAD圖紙+文檔】,含CAD圖紙+文檔,許廠井,煤礦,mta,設(shè)計(jì),cad,圖紙,文檔
翻
譯
部
分
英文原文
Numerical Simulation of Coal Floor Fault Activation Influenced by
Mining
WANG Lian-guo,MIAO Xie-xing
School of Sciences,China University of Mining&Technology,Xuzhou,Jiangsu
221008,China
Abstract:By means of the numerical simulation software ANSYS,the activation
regularity of coal floor faults caused by mining is simulated.The results indicate that
the variation in horizontal,vertical and shear stresses,as well as the horizontal and
vertical displacements in the upper and the lower fault blocks at the workface are
almost identical.Influenced by mining of the floor rock,there are stress releasing and
stress rising areas at the upper part and at the footwall of the fault.The distribution of
stress is influenced by the fault so that the stress isolines are staggered by the fault
face and the stress is focused on the rock seam around the two ends of the fault.But
the influence in fault activation on the upper or the lower fault blocks of the workface
is markedly different.When the workface is on the footwall of the fault,there is a
horizontal tension stress area on the upper part of the fault;when the workface is on
the upper part of the fault,it has a horizontal compressive stress area on the lower fault
block.When the workface is at the lower fault block,the maximum vertical
displacement is 5 times larger then when the workface is on the upper fault
block,which greatly increases the chance of a fatal inrush of water from the coal floor.
Key words:mining;fault activation;simulation
1 Introduction
In this paper we attempt to appraise the activation regularity and deformation of
coal floor faults caused by mining.Damage mechanisms of rock around coal floor
faults are described from different aspects and in different contexts
[1–10]
.Descriptions
can,to some extent,intensify our understanding of coal floor fault activation caused by
mining.However, looking at the effect of these views,a mechanical analysis cannot
achieve the purpose of pictures and clarity.For a more profound understanding of the
regularity of fault activation caused by mining at the workface,we use computers to
make numerical simulations and obtain a series of valuable conclusions.
2 Numerical Calculation of Model Formation
Considering the different fault activations influenced by the workface on the upper 中國(guó)礦業(yè)大學(xué) 2009 屆本科生畢業(yè)設(shè)計(jì) 第111頁(yè)
and lower fault blocks,we build two calculation models according to the state of the
plane strain.Fig.1 is a calculation model(ModelⅠ)of the workface on the lower fault
block,showing the loading on the top of the terrane according to the distributional
characteristics
[11]
of mine pressure.Given the conditions of mining technology of the
Qinan mine,the terrane 70 m fore- and-aft the workface and 30 m deep under the
coal floor is simulated.The lithology of the floor is Berea sandstone and the elastic
modulus E=1.09×10
4
MPa,the Poisson’s ratioμ=0.34,the cohesion C=2.94MPa,the
internal friction angleφ=35° and the densityγ=2.5 kN/m
3
.The calculation model of the
workface on the upper part of the fault(ModelⅡ)is the same as that of ModelⅠexcept
that the abutment pressure ahead of the workface is on the upper part of the fault.
3 Numerical Simulation Results and Analysis
For both models,the isoline graphs of horizontal, vertical and shear stresses as well
as the horizontal and vertical displacements of modelsⅠandⅡhave been calculated
and are plotted respectively as Figs.2–3.
3.1 Distribution characteristics of horizontal stresses
Influenced by mining of the coal floor rock, there are horizontal stress releasing
areas and rising areas at the upper part and at the footwall of the fault. The distribution
of horizontal stresses is influenced by the fault and it is obvious that the stress isolines
are staggered by the fault face and the stress is concentrated on the rock seam around
the two ends of the fault. In model I,stress is concentrated at the shallow part of the
orebody at the footwall of the fault.The horizontal stress is 6.4–10 MPa.The
horizontal stress under the fault face is 3.1–4.9 MPa.The lower part of mined-out
areas on the lower fault block releases pressure,and may even turn to tension stress of
about 0.5 MPa.But in the deeper part,the horizontal stress turns to compressive stress
and the value increases gradually. In modelⅡ,the stress is concentrated at the lower
part of the orebody on the lower fault block and the 中國(guó)礦業(yè)大學(xué) 2009 屆本科生畢業(yè)設(shè)計(jì) 第 112頁(yè) 中國(guó)礦業(yè)大學(xué) 2009 屆本科生畢業(yè)設(shè)計(jì) 第 113頁(yè)
horizontal stress becomes 14.6–27.5 MPa.The horizontal stress under the fault face is
4.94–8.16 MPa.The lower part of the mined-out areas at the fault footwall releases
pressure;the horizontal stress is 4.94 MPa.
3.2 Distributional characteristics of vertical stresses
The distributions of vertical stresses are also influenced by faults.The stress isolines
are staggered by the fault face.The stress is focused on the rock seam round the two
ends of the fault. In model I,the stress is concentrated at the lower part of the orebody
on the lower fault block.When the depth increases,the extent of the stress
concentration in the rock under the coal bed decreases.The vertical stresses of the rock
under the coal bed step down from 29.8 MPa to 18.7 MPa.The extent of the release at
the upper part of mined-out areas reduces gradually and the vertical stresses increase
from 1.5 MPa to 8.6 MPa.The vertical stresses at the footwall of the fault face
increase from 8.6 MPa to 15.4 MPa. In modelⅡ,the stress is concentrated at the lower
part of the orebody on the lower fault block. When the depth increased,the
concentration of stress in the rock under the coal bed decreased.The vertical stresses
of the rock under the coal bed step down from 47.1 MPa to 13.5 MPa.The extent of
the release of the footwall mined-out areas gradually reduces and the vertical stresses
increase from 2.33 MPa to 7.92 MPa.The vertical stress at the footwall of fault face is
13.5 MPa.
3.3 Distributional characteristics of shear stresses
The distribution of shear stresses at the upper part and the footwall of the fault are
obviously different.The distributional characteristics of shear stress isolines are in
conflict and the shear stresses are concentrated at the two ends of the fault.In
modelⅠ,the stresses under the fault face evolve from compressive shear stress to
tension shear stress.Its value ranges from–5.4 MPa to–0.3 MPa (the minus sign means
compressive stress and the positive sign means tension stress).The tension at the
upper fault block face of the shear stress area has a value of 0.3 MPa in the shallow
part which gradually increases to 2.56 MPa in the deeper part. In modelⅡ,the stress
above the fault face changed from tension shear stress to compressive shear stress and
the values ranged from–6.6 MPa to –11.6 MPa (again,the minus sign means
compressive stress and the positive sign tension stress).The upper part of the fault face
is a tension shear stress area and the value gradually reduces from 4.99 MPa to 0.57
MPa. 3.4 Horizontal displacement In model Ⅰ ,the horizontal compressive
displacement on the lower fault block is small;its value is 0.3–5.6 mm.The horizontal
compressive displacement at the fault footwall is large.The maximum value is 42.6
mm,but this falls gradually to 0.3 mm with increasing depth. In modelⅡ,the
horizontal tension displacement of the coal floor at the upper part of the fault ranges
from 1.3 mm to 10.9 mm.The deep horizontal compressive displacement is
small,ranging from 0.3 mm to 1.9 mm.The horizontal tension 中國(guó)礦業(yè)大學(xué) 2009 屆本科生畢業(yè)設(shè)計(jì) 第 114頁(yè) 中國(guó)礦業(yè)大學(xué) 2009 屆本科生畢業(yè)設(shè)計(jì) 第 115頁(yè)
displacement at the footwall of the fault is between 1.3 and 10.9 mm.
3.5 Vertical displacement
Just as in the foregoing description,during mining,vertical stresses loading on the
rock floor will change.At a time,from the front of the coal wall to the mined-out
area,advancing in the direction along the workface supporting pressure areas,release
pressure areas and stress resuming areas will arise.Related to this development,the
rock of the coal floor may become a compressive area,an expanding area and a
re-compressive area.The displacement of the rock on the coal floor reduces with
increasing depth.In modelⅠ,the displacement of the compressive area at the fault
footwall reduces from 21.4 mm in the shallow end to 8.2 mm in the deep end and the
displacement of the expanding area in upper part reduces from 84 mm to 4.9 mm
going from the shallow to the deep end. In modelⅡ,the displacement of the
compressive area at the fault footwall reduces from 34.17 mm at the shallow end to
3.88 mm at the deep end and the displacement of the expanding area in the upper part
reduces from 14.29 mm at the shallow part to 2.17 mm in the deeper part.
4 Conclusions
Given the calculations in our analysis,the following inferences can be drawn:
1)Influenced by mining of the floor rock,horizontal stress releasing areas and rising
areas at the upper part and at the footwall of the fault develop. The distributions of
horizontal stresses are influenced by the fault as indicated by the stress isolines which
are staggered at the fault face and the stress is focused on the rock seam around the
two ends of the fault.
2)The distribution of vertical stresses are also influenced by the fault that as shown
by the stress isolines,staggered at the fault face and the stress is concentrated at the
rock seam around the two ends of the fault.
3)The distribution of shear stresses at the upper part and the footwall of the fault
are also obviously different.The shear stresses concentrate at the two ends of the fault.
4)When the workface is at the footwall of the fault,there is a horizontal tension
stress area on the upper part of the fault;when the workface is on the upper part of the
fault,it has a horizontal compressive stress area at the lower fault block.
5)When the workface is on the lower fault block,the maximum vertical
displacement is 5 times larger than that at the upper fault block,which very much
increases the chance of a fatal inrush of water from the coal floor.
References
[1]Gao Y F,Shi L Q,Lou H J,et al.Water-Inrush Regularity and Water-Inrush Preferred Plane of
Coal Floor.Xuzhou:China University of Mining&Technology Publishing House,1999.(In Chinese)
[2]Qian M G,Miao X X,XU J L.The Key Strata Theory of Controlling the Rock
Seam.Xuzhou:China University of Mining &Technology Publishing House,2000.(In Chinese)
[3]Zhang J C,Zhang Y Z,Liu T Q.The Seepage Flow in Rock and the Water Inrush in Coal
Floor.Beijing:Geological Publishing House,1997.(In Chinese)
[4]Wang L G,Song Y.The Non-Linear Characteristic and the Forecast of Water Inrush from Coal
Floor.Beijing:Coal Industry Press,2001.(In Chinese)
[5]Gong S G.The Basic Application and Example Analysis of ANSYS.Beijing:Machine
Press,2003.(In Chinese) 中國(guó)礦業(yè)大學(xué) 2009 屆本科生畢業(yè)設(shè)計(jì) 第 116頁(yè)
[6]Li H Y,Zhou T P,Liu X X.The Tutorial of Engineering Application of ANSYS.Beijing:China
Railway Press,2003.(In Chinese)
[7]Wang L G,Song Y.A model to risk assessment for mine water-inrush.Journal of Engineering
Geology,2001,09(02):158–163.
[8]Miao X X,Lu A H,Mao X B,et al.Numerical simulation for roadways in swelling rock under
coupling function of water and ground pressure.Journal of China University of
Mining&Technolog,2002,12(2):121–125.
[9]Wang L G,Bi S J,Song Y.Numerical simulation research on law of deformation and breakage of
coal floor.Group Pressure and Strate Control,2004,(4):35–37.(In Chinese)
[10]Wang L G,Song Y,Miao X X.Study on prediction of water-inrush from coal floor based on
cusp catastrophic model.Chinese Journal of Rock Mechanics and
Engineering,2003,22(4):573–577.
[11]Jiang J Q.The Stress and the Movement of the Rock Around the Stope.Beijing:Coal Industry
Press,1997.(In Chinese) 中國(guó)礦業(yè)大學(xué) 2009 屆本科生畢業(yè)設(shè)計(jì) 第 117頁(yè)
中文譯文
采礦對(duì)煤層底板斷層活化影響的數(shù)值模擬
王連國(guó),繆協(xié)興
中國(guó)礦業(yè)大學(xué),理學(xué)院,中國(guó),江蘇,徐州 221008
摘要:利用數(shù)值模擬軟件 ANSYS ,模擬采礦引起的底板斷層活化規(guī)律。結(jié)果表
明,工作面在斷層上盤和下盤時(shí),橫向、縱向和剪應(yīng)力的變化,以及水平和垂直
位移幾乎一樣的。因采礦地面巖石影響,在斷層的上盤和下盤有應(yīng)力降低和壓力
上升的地區(qū)。應(yīng)力分布的影響,這樣的斷層的壓力等值線的交錯(cuò)面臨的過(guò)失和強(qiáng)
調(diào)的是集中在巖層周圍的兩端。但是斷層的影響,活化的上部或下部斷塊的工作
面明顯不同.當(dāng)工作面在斷層的下盤,有一個(gè)橫向拉應(yīng)力區(qū)的在斷層的上盤;當(dāng)工
作面是在斷層上盤,它有一個(gè)壓應(yīng)力水平較低的地區(qū)的工作面斷層塊。當(dāng)工作面
在斷層下盤,最大垂直位移比工作面在斷層上盤大 5 倍,這樣極大地增大致命的
底板突水機(jī)會(huì)。
關(guān)鍵詞:采礦;斷層活化;模擬
1 簡(jiǎn)介
在本文中,我們?cè)噲D評(píng)價(jià)受煤層底板的斷層活化規(guī)律和變形。損害機(jī)制所造
成的巖石煤層底板斷層周圍描述來(lái)自不同方面和在不同情況。說(shuō)明可以在一定程
度上加強(qiáng)我們的理解采礦影響煤層底板斷層活化.然而,從這些觀點(diǎn)的考慮,機(jī)
械分析無(wú)法實(shí)現(xiàn)的預(yù)期的目的.為了更深刻的理解受工作面影響斷層活化規(guī)律,
我們使用計(jì)算機(jī),從而使數(shù)值模擬試驗(yàn),并獲得了一系列有價(jià)值的結(jié)論。
2 數(shù)值計(jì)算模型的形成
考慮到工作面在斷層上下盤位子不同的影響斷層活化,我們建立兩個(gè)數(shù)字模
型通過(guò)不同拉伸狀態(tài).圖 1 是一個(gè)數(shù)值模型(模型Ⅰ)的工作面下盤,顯示的負(fù)
荷上方的巖層根據(jù)礦山壓力的分布特征.基于現(xiàn)在采礦技術(shù)學(xué)條件祁南煤礦,模
擬工作面前 70 米和縱向的和 30 米深的煤層底板.底板的巖性是貝雷亞砂巖的彈
性模量 E = 1.09 × 10
4
MPa 時(shí),泊松比μ = 0.34 ,凝聚力 ? = 2.94MPa 時(shí),內(nèi)
摩擦角φ = 35°和容重 γ = 2.5 kN/m
3
。工作面在斷層上盤數(shù)值模型(模式Ⅱ )
和模型Ⅰ是一樣的,但前面的支承壓力是在工作面是在斷層上盤的情況下。
圖 1 計(jì)算模型
3 數(shù)值模擬結(jié)果與分析 中國(guó)礦業(yè)大學(xué) 2009 屆本科生畢業(yè)設(shè)計(jì) 第 118頁(yè)
(一)等值的水平應(yīng)力
(二)等值線垂直應(yīng)力
(三)剪應(yīng)力等值線
(四)等值線水平位移
(五)垂直位移等值線
圖 2 模型Ⅰ的計(jì)算結(jié)果
對(duì)于這兩種模型,等值線圖的水平,縱向和剪應(yīng)力以及橫向和垂直位移的模
型Ⅰ , Ⅱ計(jì)算和繪制分別為圖 2-3。
3.1 橫向應(yīng)力分布特征
(一)等值的水平應(yīng)力 中國(guó)礦業(yè)大學(xué) 2009 屆本科生畢業(yè)設(shè)計(jì) 第 119頁(yè)
(二)等值線垂直應(yīng)力
(三)剪應(yīng)力等值線
(四)等值線水平位移
(五)垂直位移等值線
圖 3 模型Ⅱ的計(jì)算結(jié)果
受開采的煤層底板巖石影響,有水平應(yīng)力降低區(qū)域和不斷上升的斷層上盤。
受斷層影響分配的橫向應(yīng)力,很明顯,應(yīng)力等值線是錯(cuò)開的斷層所面臨的壓力是
聚集在斷層巖層周圍的兩端。在模型Ⅰ,強(qiáng)調(diào)的是集中在淺水部分礦體上盤.水
平應(yīng)力是 6.4-10 MPa. 在斷層面得水平應(yīng)力 3.1 至 4.9MPa。下部采空區(qū)的低斷塊
降低壓力,甚至可能反過(guò)來(lái)向拉應(yīng)力約 0.5 MPa。在更深的部分,水平應(yīng)力和壓
應(yīng)力輪流逐漸增加。在模式Ⅱ ,應(yīng)力集中在下部礦體低斷塊和橫向應(yīng)力成為
14.6-27.5 MPa。水平應(yīng)力下的斷裂面是 4.94-8.16MPa。下部采空區(qū)的斷層降低壓
力;橫向應(yīng)力是 4.94MPa。
3.2 垂直應(yīng)力分布特征
垂直應(yīng)力分布也受到斷層的影響。壓力等值線的交錯(cuò)由斷層面.應(yīng)力集中在
煤層下的斷層兩端。在模型Ⅰ中,應(yīng)力是集中在較低的部分礦體低斷層。當(dāng)深度
的增加,度在巖石下的應(yīng)力聚集程降低.垂直應(yīng)力條件下巖石煤層步驟從 29.8MPa
的 18.7 MPa.The 程度釋放在上部采空區(qū)減少逐步和垂直應(yīng)力增加 1.5 強(qiáng)度為 8.6
MPa.The 垂直強(qiáng)調(diào)在盤故障面對(duì)增加 8.6MPa 至 15.4MPa。在模式Ⅱ ,應(yīng)力集中 中國(guó)礦業(yè)大學(xué)2009屆本科生畢業(yè)設(shè)計(jì) 第120頁(yè)
在下部礦體低斷塊。當(dāng)深度增加,煤床下的巖石垂直應(yīng)力集中在 47.1 MPa 到 13.5
MPa.在斷層下盤垂直應(yīng)力增長(zhǎng)從2.33 MPa提高7.92 MPa.垂直應(yīng)力在斷層下盤為
13.5 MPa。
3.3 剪應(yīng)力的分布特征
在斷層上下盤的剪切應(yīng)力的分布式明顯不同的,剪切應(yīng)力等值線是沖突的,
和集中在斷層兩端剪切應(yīng)力相比。模型Ⅰ ,壓力下面臨斷層演變從壓剪應(yīng)力的
張應(yīng)力。值范圍從- 5.4MPa 至-0.3MPa(減號(hào)指壓應(yīng)力和積極的跡象意味著拉應(yīng)
力) 。在上斷塊面的張應(yīng)力對(duì)剪應(yīng)力地區(qū)有價(jià)值 0.3MPa 的淺層部分,逐步提
高到 2.56MPa 的更深的一部分。在模式Ⅱ的應(yīng)力面對(duì)上述故障從緊張到壓剪應(yīng)
力剪應(yīng)力和價(jià)值不等, 6.6MPa,以-11.6MPa(再次,減號(hào)指壓壓力和積極的跡
象拉應(yīng)力)。上部部分?jǐn)嗔衙媸且粋€(gè)緊張剪應(yīng)力區(qū)和逐步降低的價(jià)值從 4.99 至
0.57MPa。
3.4 水平位移
模型Ⅰ,橫向壓縮病安置低斷塊小,它的價(jià)值是 0.3-5.6 mm.橫向壓縮病安
置在斷層下盤是。最大值為四十二點(diǎn)六毫米,但逐漸下降至 0.3 毫米日益深入。
在模式Ⅱ ,緊張的橫向位移煤炭樓的上半部分的故障范圍從 1.3mm 到 9.10mm.
深橫向壓縮位移小,范圍從 0.3 毫米 1.9 mm.橫向位移緊張盤故障是 1.3 和 10.9
毫米。
3.5 垂直位移
正如在上述的描述,在采礦,垂直應(yīng)力裝載的巖石上改變.有時(shí),從煤壁前
面到采空區(qū),推進(jìn)方向沿支撐的工作面壓力區(qū),降低工作壓力和垂直壓力恢復(fù)地
區(qū)將上升.重訴這一發(fā)展,巖層的煤層底板可能成為壓區(qū),擴(kuò)大面積和重新壓縮
面積位移巖石上的煤層底板降低日益深入。模型Ⅰ ,壓縮位移在斷層下盤減少
21.4 毫米,在淺端 8.2mm 深底的擴(kuò)大面積減少上部從 84 毫米到 4.9mm 從淺到深
部。在模式Ⅱ ,壓縮位移在減少斷層下盤在從 34.17mm 淺端部 3.88mm 在底和
深的擴(kuò)大面積的上半部分減少?gòu)?14.28 在淺層部分 2.17mm 的更深一部分。
4 結(jié)論
鑒于我們的分析計(jì)算,可以得出以下推論:
1)受采礦地面巖石,橫向應(yīng)力釋放領(lǐng)域和不斷上升的地區(qū)上半部分,并在
盤故障發(fā)展。分布橫向應(yīng)力的影響的過(guò)失所顯示的壓力等值線是錯(cuò)開的故障面臨
的應(yīng)力集中對(duì)巖層周圍的兩端故障。
2)垂直分布也強(qiáng)調(diào)受故障,由于所表現(xiàn)出的壓力等值線,交錯(cuò)在故障面對(duì)
的壓力是集中在巖層周圍的兩端故障。
3)剪應(yīng)力分布的上限部分和下盤的故障也明顯不同,剪應(yīng)力集中在兩個(gè)兩
端的故障。
4)當(dāng)工作面處于盤的故障,有一個(gè)橫向拉應(yīng)力區(qū)上部斷裂;當(dāng)工作面于上半
部分的故障,它有一個(gè)橫向壓縮應(yīng)力區(qū)在較低斷塊。
5)當(dāng)工作面是低故障塊,最大垂直位移的 5 倍大于在上斷塊,這非常多增
加了一個(gè)致命的突水從煤層底板。 中國(guó)礦業(yè)大學(xué)2009屆本科生畢業(yè)設(shè)計(jì) 第121頁(yè)
參考文獻(xiàn)
[1] Gao Y F,Shi L Q,Lou H J 等.煤層底板突水突規(guī)律與防治.徐州 :中國(guó)礦業(yè)大學(xué)出版社,
1999 。
[2]錢鳴高,繆協(xié)興 ,巖層控制的關(guān)鍵層理論.徐州 :中國(guó)礦業(yè)大學(xué)出版社, 2000 。
[3] Zhang J C,Zhang Y Z,Liu T Q.滲流在巖石和在煤礦底板突水.北京 :地質(zhì)出版,1997 年。
[4]王連國(guó),宋揚(yáng),煤礦底板突水的非線性特性及預(yù)測(cè).北京 :煤炭工業(yè)出版社, 2001 年。
[5] Gong S G,基本應(yīng)用與實(shí)例分析 ANSYS.北京 :機(jī)械工業(yè)出版社, 2003 。
[6] Li H Y,Zhou T P,Liu X X,ANSYS 應(yīng)用工程輔導(dǎo).北京 :中國(guó)鐵道出版社, 2003 。
[7]王連國(guó),宋元,礦井突水風(fēng)險(xiǎn)評(píng)估模型.工程地質(zhì)學(xué)報(bào), 2001,09 ( 02 ) :158-163 。
[8] 繆協(xié)興,盧愛紅,茅獻(xiàn)彪,數(shù)值仿真膨脹巖巷道耦合作用下的水和地面壓力.中國(guó)礦業(yè)大學(xué)
學(xué)報(bào), 2002,12( 2 ):121 - 125 。
[9]王連國(guó),畢善軍,宋揚(yáng),研究煤礦底板的變形與斷裂規(guī)律數(shù)值模擬.壓山壓力與頂板管理,
2004 ,( 4 ) :35 - 37 。
[10]王連國(guó),宋揚(yáng),繆協(xié)興,基于尖點(diǎn)災(zāi)難性煤層底板突水模型研究.中國(guó)巖石力學(xué)與工程雜
志, 2003,22 ( 4 ):573 - 577 。
[11] Jiang J Q,回采工作面圍巖運(yùn)動(dòng)和應(yīng)力.北京:煤炭工業(yè)出版社,1997 年。
收藏