【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無(wú)水印,高清圖,,壓縮包內(nèi)文檔可直接點(diǎn)開預(yù)覽,需要原稿請(qǐng)自助充值下載,請(qǐng)見(jiàn)壓縮包內(nèi)的文件及預(yù)覽,所見(jiàn)才能所得,請(qǐng)細(xì)心查看有疑問(wèn)可以咨詢QQ:414951605或1304139763
附錄2
體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響
Sadhana Vol.31, Part 5, October2006, pp. 543–556.(C)Printed in India
Yildiz Technical University Mechanical Engineering Department,,34349 Besiktas,Istanbul,Turkey
e-mail:aakkaya@yildiz.edu.tr
MS received 9 September 2005;revised 20 February 2006
摘要. 這篇研究報(bào)告,我們主要通過(guò)PID(比例積分微分)控制方式檢測(cè)液壓控制系統(tǒng)對(duì)角速度控制的Matlab仿真。有一個(gè)地方很值得關(guān)注,包括對(duì)體積模量控制分析系統(tǒng)。仿真結(jié)果表明,體積模量通過(guò)變參數(shù)可以獲得更實(shí)用的模型。此外,PID控制器的不足之處在于對(duì)變體積模量角速度的控制,而模糊控制能夠?qū)崿F(xiàn)較好的控制。
關(guān)鍵詞 液壓傳動(dòng);體積模量;PID(比例積分微分);模糊控制
1.引言
液壓傳動(dòng)系統(tǒng)是種輸出可實(shí)現(xiàn)無(wú)級(jí)調(diào)速的理想動(dòng)力傳遞方式,這樣在工程中得到了廣泛的應(yīng)用,特別是在制造領(lǐng)域,自動(dòng)化和重型車輛。它能夠提供快速的響應(yīng),在變負(fù)載情況下能保持精確的傳動(dòng)速度,可以改善能量的利用效率和變功率傳動(dòng)。液壓傳動(dòng)的基礎(chǔ)為液壓系統(tǒng)。一般來(lái)講,它包括由異步電動(dòng)機(jī)驅(qū)動(dòng)的變量泵,定量或變量馬達(dá),所有要求控制的都在一個(gè)簡(jiǎn)單的控制柜中。通過(guò)調(diào)節(jié)泵或者馬達(dá)的排量,實(shí)現(xiàn)無(wú)級(jí)調(diào)速。
制造廠商和研究人員不斷的改進(jìn)性能和降低液壓傳動(dòng)系統(tǒng)成本。尤其是近十年,體積模量在液壓傳動(dòng)和控制系統(tǒng)的研究中引起了人們的關(guān)注。一些這方面的研究專題在學(xué)術(shù)期刊中可以找到。Lennevi和Palmberg、Lee和Wu運(yùn)用各種轉(zhuǎn)速控制算法求液壓系統(tǒng)的液壓力得到了很好的發(fā)展和應(yīng)用。所有這些設(shè)計(jì)用的體積模量都是固定值,適用的壓力范圍廣。但是,實(shí)際上體積模量是液壓系統(tǒng)中必須考慮的因素。因溫度變化和大氣壓,體積模量可在運(yùn)行過(guò)程中求出液壓系統(tǒng)的液壓力。一點(diǎn)空隙足以大副減少體積模量。此外,系統(tǒng)壓力起著重要的作用在體積模量值上。非線性影響了體積模量的不穩(wěn)定,例如:壓力振動(dòng)導(dǎo)致的壓力波會(huì)對(duì)液壓系統(tǒng)的運(yùn)行不利,還有可能會(huì)因磨損而導(dǎo)致部件的使用壽命縮短,干擾控制系統(tǒng),降低了效率和增加了噪音。盡管有這些不良的影響,但在液壓傳動(dòng)系統(tǒng)中很少有關(guān)于體積模量的研究。1994年Yu等人開發(fā)了一個(gè)參數(shù)辯識(shí)的方法,通過(guò)長(zhǎng)的管子來(lái)測(cè)量壓力波在液壓傳動(dòng)系統(tǒng)中對(duì)液壓油體積模量的影響。Marning (1997)發(fā)現(xiàn)了液壓油體積模量與液壓系統(tǒng)壓力之間的線性關(guān)系。但是,迄今為止,在液壓傳動(dòng)控制的設(shè)計(jì)過(guò)程中,還沒(méi)有文獻(xiàn)將體積模量考慮進(jìn)液壓傳動(dòng)控制系統(tǒng)的動(dòng)態(tài)模型中。事實(shí)上,典型的液壓傳動(dòng)系統(tǒng)變體模量比普通的液壓傳動(dòng)系統(tǒng)有更復(fù)雜的動(dòng)態(tài)過(guò)程。因此,伺服控制系統(tǒng)的穩(wěn)態(tài)、 動(dòng)態(tài)狀況對(duì)體積模變得更為重要,因?yàn)殚]環(huán)系統(tǒng)本身不會(huì)引起穩(wěn)定性問(wèn)題。體積模量無(wú)法直接確定,這樣須要估計(jì)。基于這一估計(jì), 在液壓控制系統(tǒng)中可能要采用修正的方法。體積模量復(fù)雜的動(dòng)態(tài)相互作用和控制方式是用仿真建模和分析軟件來(lái)監(jiān)測(cè)的。做一個(gè)真正的模型系統(tǒng)是非常復(fù)雜和費(fèi)時(shí)的,模擬仿真測(cè)試是非常有利的。伺服液壓傳控制系統(tǒng)是解決這個(gè)問(wèn)題的好辦法。靜態(tài)和動(dòng)態(tài)模的仿真試驗(yàn)不需要昂貴的模型。仿真還能縮短產(chǎn)品的設(shè)計(jì)周期。
這項(xiàng)研究的重點(diǎn)是一個(gè)典型的液壓傳動(dòng)控制系統(tǒng)。非線性系統(tǒng)模型是通過(guò)MATLAB的仿真軟件來(lái)研究的。該系統(tǒng)模型是由泵、閥、液壓馬達(dá)、液壓管等組件組合而成。另外,變體積模量將描述出影響系統(tǒng)動(dòng)力學(xué)的現(xiàn)象與控制算法。為此,兩個(gè)不同的液壓軟管仿真模型被分別接入系統(tǒng)模型中。另外,利用模型來(lái)設(shè)計(jì)控制的過(guò)程。液壓馬達(dá)角速度的控制是通過(guò)PID(比例積分微分)和 模糊控制器來(lái)完成的。在第一個(gè)模型中,液壓系統(tǒng)的體積模量和角速度假設(shè)為一個(gè)定值,并由典型的PID(比例積分微分)和模糊控制器來(lái)控制。第二個(gè)模型,體積模量被定義為可變參數(shù),這個(gè)參數(shù)取決于大氣壓和系統(tǒng)的壓力。在應(yīng)用同一PID控制參數(shù)的情況下,這種新模式適用于液壓系統(tǒng)的速度控制。接下來(lái),模糊控制器應(yīng)用于這一新模式中,可以判斷體積模量的非線性關(guān)系。兩種控制辦法的仿真結(jié)果被用來(lái)對(duì)比分析體積模量在液壓系統(tǒng)中的不同情況。
2.?dāng)?shù)學(xué)模型
液壓系統(tǒng)的物理模型如圖1所示。變量泵由異步電動(dòng)機(jī)驅(qū)動(dòng),提供液壓能給傳動(dòng)系統(tǒng)來(lái)產(chǎn)生固定的體積模量效應(yīng),變量馬達(dá)驅(qū)動(dòng)負(fù)載。為了不讓系統(tǒng)產(chǎn)生過(guò)高的壓力,使用減壓閥來(lái)解決。
圖1. 液壓傳動(dòng)系統(tǒng)
從客觀的角度來(lái)看這個(gè)研究,系統(tǒng)的數(shù)學(xué)模型應(yīng)該越簡(jiǎn)單越好。與此同時(shí),它必須包括重要的實(shí)際特征。了解單獨(dú)組件的目的是為了更好的了解系統(tǒng)模型。利用物理基礎(chǔ)知識(shí),目前可以得到平衡和連續(xù)性方程。模型反映出了每個(gè)組件動(dòng)態(tài)狀態(tài)時(shí)的情況。通過(guò)了解每個(gè)組件,將所有組件聯(lián)系起來(lái)可以了解整個(gè)系統(tǒng),從而得到整個(gè)系統(tǒng)模型。本文中,利用各組件來(lái)開發(fā)液壓系統(tǒng)模型是早期所用到的方法。
2.1 變量泵
假設(shè)原動(dòng)機(jī)(異步電動(dòng)機(jī))的角速度是個(gè)常數(shù)。因此,聯(lián)結(jié)泵的軸的角速度也是個(gè)恒定的值。泵的流量可以通過(guò)變量泵的斜盤角度和位移得到如下關(guān)系:
Qp = αkpηvp, (1)
式中,Qp表示泵的流量(m3/s),α表示斜盤的傾斜角度(?),kp表示泵的系數(shù),ηvp表示泵的容積效率,假設(shè)這個(gè)參數(shù)與泵自轉(zhuǎn)角度沒(méi)有關(guān)系。
2.2 減壓閥
為了簡(jiǎn)化,減壓閥不考慮動(dòng)態(tài)因素的影響,這樣,可以得到減壓閥在開啟和關(guān)閉時(shí)的兩個(gè)流量方程。
Qv = kv(P ? Pv), 如果P 大于Pv, (2)
Qv = 0, 如果 P 小于等于 Pv, (3)
式中,kv表示閥的靜態(tài)特性,P表示系統(tǒng)的壓力(帕),Pv表示開啟壓力(帕)。
2.3 液壓管
作為傳統(tǒng)模型,高壓管用于連接泵和馬達(dá),在這里體積模量是個(gè)固定值。變體積模量在接下來(lái)的章節(jié)中討論。
流體的可壓縮性關(guān)系如下式(4)所示。等式(5)提出了在給定流量時(shí)壓力值的求法。假設(shè)液壓管對(duì)系統(tǒng)的壓降忽略不計(jì)。
Qc = (V /β)(dP/dt), (4)
(dP/dt) = (β/V )Qc, (5)
式中,Qc表示經(jīng)過(guò)壓縮后的流量(m3/s), V表示流體經(jīng)過(guò)壓縮后的體積(m3),β表示流體的固定體積模量,在液壓系統(tǒng)和動(dòng)能傳動(dòng)中它是一個(gè)重要的參數(shù),因而它將影響動(dòng)力系統(tǒng)和控制系統(tǒng)的狀況。非氣液壓油的體積模量取決于溫度和壓力,礦物油根據(jù)添加劑數(shù)量不同,體積模量為1200~2000Mpa。但是,系統(tǒng)壓力和融合空氣,將影響體積模量的值。如果采用液壓膠管而非鋼管,體積模量在這里就回大大降低。由于這些參數(shù)影響體積模量,液壓傳動(dòng)系統(tǒng)模型必須具有更準(zhǔn)確的動(dòng)力系統(tǒng)。
流體和空氣的混合體在液壓管中的變體積模量可以如下所示:
(6)
式中,下標(biāo)α、f和h分別指空氣、流體和液壓管。假設(shè)初始總體積為=+,還有 >>。這樣體積模量會(huì)比任何, , 和 Vt/Va都要小。積模量中流體的來(lái)自于生產(chǎn)廠家體的數(shù)據(jù)。(Cp/Cv)P = 1.4P主要用于絕熱狀態(tài)下空氣的體積模量。(6)式還可以改寫如下:
(7)
式中:s表示融入空氣的總體積(s = Va/Vt )。
2.4 液壓馬達(dá)和負(fù)載
液壓馬達(dá)的流量(m3/s)可以用公式表示如下:
Qm = kmω/ηvm, (8)
式中:km表示液壓馬達(dá)的系數(shù),ω表示液壓馬達(dá)的角速度,ηvm表示液壓馬達(dá)的容積效率。假設(shè)液壓馬達(dá)的效率不受轉(zhuǎn)動(dòng)軸的影響。液壓馬達(dá)的扭矩可有公式表示如下:
Mm = kmt_Pηmm, (9)
式中:kmt表示液壓馬達(dá)的扭矩系數(shù),P表示液壓馬達(dá)的壓降,ηmm表示液壓馬達(dá)的機(jī)械效率。液壓馬達(dá)所產(chǎn)生的扭矩等于瞬間馬達(dá)負(fù)載的總和,可由公式表示如下:
Mm = MI +MB +Mo, (10)
式中,MI、MB和Mo表示瞬間形成的負(fù)載慣性,摩擦力伴隨機(jī)械運(yùn)行而生,這樣可以描述為:
Mm = Im(dω/dt) + Bω +Mo, (11)
式中,Im表示液壓馬達(dá)軸的轉(zhuǎn)動(dòng)慣量,B表示馬達(dá)和軸的摩擦系數(shù),ω表示馬達(dá)軸的角速度。等式(11)用于確定液壓馬達(dá)軸的角速度。從新定義角速度公式如下:
dω/dt = (Mm ? Bω ?Mo)/Im. (12)
2.5 液壓傳動(dòng)系統(tǒng)
通過(guò)基本數(shù)學(xué)模型,結(jié)合液壓系統(tǒng)中各組件和發(fā)生的現(xiàn)象,從而方便獲得總體液壓傳動(dòng)系統(tǒng)模型。由此,液壓系統(tǒng)是根據(jù)模型仿照而成的系統(tǒng)。在開發(fā)動(dòng)態(tài)模型系統(tǒng)時(shí),假設(shè)傳動(dòng)的靜態(tài)和動(dòng)態(tài)特性不取決于液壓馬達(dá)的旋轉(zhuǎn)方向,傳動(dòng)處于平衡狀態(tài)。不考慮模型中液壓泵和馬達(dá)的泄露量。通過(guò)數(shù)學(xué)模型可以得到液壓傳動(dòng)系統(tǒng)的兩個(gè)等式如下:
流量方程:
Qp = Qm + Qc + Qv, (13)
瞬時(shí):
Mm = MI +MB +Mo. (14)
聯(lián)合等式(5)和(12),可以得到如下公式:
dP/dt = (β/V )(Qp ? Qm ? Qv), (15)
dω/dt = (Mm ? Bω ?Mo)/Im. (16)
Matlab仿真一個(gè)常用的模擬仿真方式,它主要用于求解非線性方程。仿真模型是基于圖2中所示的液壓傳動(dòng)系統(tǒng)的數(shù)學(xué)模型。系統(tǒng)模型中的組件可以很容易在規(guī)定要求內(nèi)變換。據(jù)此,改變液壓組件中的液壓管,通過(guò)等式(7)可以得到第二種模型。
3.控制應(yīng)用
許多相關(guān)的刊物記載出版了液壓傳動(dòng)系統(tǒng)中馬達(dá)與相連負(fù)載的速度控制方法。為了完成這個(gè)目標(biāo),設(shè)計(jì)中采用了不同的閉環(huán)控制。但是,1996年Lee和Wu通過(guò)調(diào)節(jié)泵的位移來(lái)調(diào)節(jié)負(fù)載的速度,這種測(cè)試方法是最有用的。此外,1996年Re等人解決了用改變泵的排量來(lái)控制負(fù)載的速度,改變泵和馬達(dá)的流量是最高效的,在任何時(shí)候應(yīng)該盡可能首選這種控制方法。為此,正在研究液壓傳動(dòng)系統(tǒng)的這一問(wèn)題,輸出角速度通過(guò)液壓馬達(dá)提供的流量來(lái)控制,通過(guò)調(diào)節(jié)變量泵斜盤的角度來(lái)調(diào)節(jié)流量。為了研究的方便,在應(yīng)用中不考慮斜盤的動(dòng)力學(xué)影響。此外,斜盤控制系統(tǒng)動(dòng)態(tài)速度通常比其它系統(tǒng)要快,因此忽略動(dòng)力學(xué)影響是有理由的。液壓傳動(dòng)控制系統(tǒng)中液壓馬達(dá)的角速度通過(guò)精確控制得到,因而事先必須設(shè)計(jì)好控制器。在工業(yè)中,經(jīng)典的控制方法有PI、PID,它們被用于液壓傳動(dòng)系統(tǒng)中的速度控制。關(guān)鍵是要確定控制參數(shù),因?yàn)镻ID控制方法具有線性的特性。特別是在控制器中應(yīng)該把體積模量當(dāng)作一個(gè)非線性的。由于有可變范圍,這樣控制器的性能要非常的穩(wěn)定。以理論知識(shí)為基礎(chǔ)的控制越來(lái)越多,特別是在模糊控制領(lǐng)域。不像經(jīng)典控制方法,模糊控制結(jié)合非線性來(lái)設(shè)計(jì)控制思路。因此,這種控制方法的應(yīng)用可以用于判斷對(duì)減少體積模量影響的控制能力。
3.1 PID控制
液壓傳動(dòng)系統(tǒng)對(duì)角速度控制的算法在公式(17)、(18)中已經(jīng)給出。用Ziegler-Nichols法校正控制參數(shù),例如比例增益(Kp),響應(yīng)時(shí)間常數(shù)(τd ),積分時(shí)間常數(shù)(τi)。通過(guò)參考角速度來(lái)確定最優(yōu)的控制參數(shù)。圖3表示液壓傳動(dòng)系統(tǒng)
仿真模型。
uv(t) = Kp·e(t) + Kp·τd·de(t)/dt +Kp/τi·dt, (17)
e(t) = ωr ? ω. (18)
4、結(jié)論
利用系統(tǒng)模型和仿真技術(shù)分析了體積模量非線性對(duì)液壓傳動(dòng)系統(tǒng)的影響。通過(guò)這個(gè)研究表明,如果忽略了液壓傳動(dòng)系統(tǒng)體積模量的動(dòng)態(tài)影響,對(duì)系統(tǒng)的響應(yīng)和安全運(yùn)行將帶來(lái)很大的錯(cuò)誤。因此,應(yīng)該把體積模量作為變參數(shù)考慮,這樣可以得到實(shí)際的整體模型和確定更精確的PID控制器參數(shù)。迄今為止,還沒(méi)有分析液壓系統(tǒng)模型體積模量的同時(shí)描述模型的設(shè)計(jì)特點(diǎn)的文獻(xiàn)。于是,對(duì)于當(dāng)時(shí)最早的設(shè)計(jì),PID控制器應(yīng)用于液壓傳動(dòng)控制系統(tǒng)可能是有用的。這樣可以清楚的看到模糊控制器消除變體積模量的不良影響。這樣有利于控制設(shè)計(jì)開發(fā)更好的控制器。今后的研究發(fā)展的方向,將包括模型斜盤的動(dòng)力學(xué)問(wèn)題、閥的動(dòng)力學(xué)問(wèn)題、液壓馬達(dá)和泵的流動(dòng)復(fù)雜和轉(zhuǎn)矩問(wèn)題。這樣,一個(gè)合適的控制方法將被應(yīng)用于調(diào)速和變負(fù)載的情況。
參考文獻(xiàn)
Dasgupta K 2000 Analysis of a hydrostatic transmission system using low speed high torque motor. Mech. Mach. Theory 35: 1481–1499
Dasgupta K, Chattapadhyay A, Mondal S K 2005 Selection of fire-resistant hydraulic fluids through system modelling and simulation. Simul. Model. Pract. Theory 13: 1–20
Eryilmaz B,Wilson B H 2001 Improved tracking control of hydraulic systems. Trans. ASME: J. Dyn. Syst. Meas. Control 123: 457–462
Huhtala K 1996 Modelling of hydrostatic transmission – steady state, linear and non- linear models. Acta Polytech. Sci. Me. 123:
Jedrzykiewicz Z, Pluta J, Stojek J 1997 Research on the properties of a hydrostatic transmission for different efficiency models of its elements. Acta MontanisticaSlov - aca 2: 373–380
Jedrzykiewicz Z, Pluta J, Stojek J 1998 Application of the Matlab-Simulink package in the simulation tests on hydrostatic systems. Acta Montanistica Slovaca Rocnik 3: 29–36
Kugi A, Schlacher K, Aitzetm¨uller H, Hirmann G 2000 Modelling and simulation of a hydrostatic transmission with variable-displacement pump. Math. Comput. Simul. 53: 409–414
Lee C B, Wu H W 1996 Self-tuning adaptive speed control for hydrostatic transmiss- ion systems. Int. J. Comput. Appl. Technol. 9: 18–33
Lennevi J, Palmberg J O 1995 Application and implementation of LQ design method for the velocity control of hydrostatic transmissions. Proc. Inst. Mech. Eng., J. Syst. Control Eng. 209: 255–268
Manring N D 1997 The effective fluid bulk modulus within a hydrostatic transmission. Trans. ASME: J. Dyn. Syst. Meas. Control 119: 462–466
Manring N D, Luecke G R 1998 Modelling and designing a hydrostatic transmission with a fixeddisplacement motor. Trans. ASME: J. Dyn. Syst. Meas. Control 120: 45–49
McCloy D, Martin H R 1980 Control of fluid power, analysis and design (New York: John Wiley &Sons)
Merrit H E 1967 Hydraulic control systems (New York: John Wiley & Sons)
Ogata K 1990 Modern control engineering (Englewood Chiffs, NJ: Prentice-Hall)
Piotrowska A 2003 The control of the rotational speed of hydraulic engine in hydro- static transmission by use of the module DSP. 28th ASR Seminar, Instruments and Control (Ostrava:V?SB-TU) pp. 291–297
Prasetiawan E A 2001 Modelling, simulation and control of an earthmoving vehicle powertrain simulator.
M Sc thesis, Mechanical Engineering in Graduate College, University of Illinois, Urbana, Il
Re L, Goransson A, Astolfi A 1996 Enhancing hydrostatic gear efficiency through nonlinear optimal control strategies. Trans. ASME: J. Dyn. Syst. Meas. Control 118: 727–732
Tan H Z, Sepehri N 2002 Parametric fault diagnosis for electrohydraulic cylinder drive units. IEEE Trans. Ind. Electron. 49: 96–106
Tanaka K 1996 Introduction to fuzzy logic for engineering application (Berlin Springer)
Tikkanen S, Huhtala K, Vilenius M 1995 Fuzzy controllers in hydrostatic transmis- sion. IEE Colloquium on Innovative Actuators for Mechatronic Systems (London: Inst. Elec. Eng.) 15/1–15/3
Watton J 1989 Fluid power systems: Modelling, simulation, analog andmicroco - mputer control (Englewood Chiffs, NJ: Prentice-Hall)
Wu K, Zhang Q, Hansen 2004 Modelling and identification of a hydrostatic trans- mission hardwarein-the-loop simulator. Int. J. Vehicle Des. 34: 63–75
Yu J, Chen Z, Lu Y 1994 The variation of oil effective bulk modulus with pressure in hydraulic systems. Trans. ASME: J. Dyn. Syst. Meas. Control 116: 146–150
Zadeh L 1965 Fuzzy sets. Inf. Control 8: 338–353
8