2019-2020年高中數(shù)學(xué) 1.1《正弦定理》教案 北師大版必修5.doc
《2019-2020年高中數(shù)學(xué) 1.1《正弦定理》教案 北師大版必修5.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 1.1《正弦定理》教案 北師大版必修5.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 1.1《正弦定理》教案 北師大版必修5 課標(biāo)要求:本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo): (1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。 (2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問(wèn)題。 編寫(xiě)意圖與特色 1.?dāng)?shù)學(xué)思想方法的重要性 數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。 本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問(wèn)題、思考解決問(wèn)題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。 教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題?!痹O(shè)置這些問(wèn)題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。 2.注意加強(qiáng)前后知識(shí)的聯(lián)系 加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書(shū)成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。 本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過(guò)去的問(wèn)題,使學(xué)生對(duì)于過(guò)去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。 《課程標(biāo)準(zhǔn)》和教科書(shū)把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡(jiǎn)潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡(jiǎn)潔,教科書(shū)則用了向量的方法,發(fā)揮了向量方法在解決問(wèn)題中的威力。 在證明了余弦定理及其推論以后,教科書(shū)從余弦定理與勾股定理的比較中,提出了一個(gè)思考問(wèn)題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.” 3.重視加強(qiáng)意識(shí)和數(shù)學(xué)實(shí)踐能力 學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問(wèn)題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題。 教學(xué)內(nèi)容及課時(shí)安排建議 1.1正弦定理和余弦定理(約3課時(shí)) 1.2應(yīng)用舉例(約4課時(shí)) 1.3實(shí)習(xí)作業(yè)(約1課時(shí)) 評(píng)價(jià)建議 1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問(wèn)題,研究問(wèn)題。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問(wèn)題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問(wèn)題的過(guò)程中,一個(gè)問(wèn)題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。對(duì)于一些常見(jiàn)的測(cè)量問(wèn)題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。 2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問(wèn)題的解決實(shí)際問(wèn)題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)習(xí)過(guò)程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問(wèn)題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問(wèn)題。 1.1正弦定理 (一)教學(xué)目標(biāo) 1.知識(shí)與技能: 通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問(wèn)題。 2. 過(guò)程與方法:讓學(xué)生從已有的幾何知識(shí)出發(fā),共同探究在任意三角形中,邊與其對(duì)角的關(guān)系,引導(dǎo)學(xué)生通過(guò)觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,并進(jìn)行定理基本應(yīng)用的實(shí)踐操作。 3.情態(tài)與價(jià)值:培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問(wèn)題的運(yùn)算能力;培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思思想能力,通過(guò)三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。 教學(xué)重點(diǎn):正弦定理的探索和證明及其基本應(yīng)用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。 學(xué)法:引導(dǎo)學(xué)生首先從直角三角形中揭示邊角關(guān)系:,接著就一般斜三角形進(jìn)行探索,發(fā)現(xiàn)也有這一關(guān)系;分別利用傳統(tǒng)證法和向量證法對(duì)正弦定理進(jìn)行推導(dǎo),讓學(xué)生發(fā)現(xiàn)向量知識(shí)的簡(jiǎn)捷,新穎。 教學(xué)設(shè)想 [創(chuàng)設(shè)情景] 如圖1.1-1,固定ABC的邊CB及B,使邊AC繞著頂點(diǎn)C轉(zhuǎn)動(dòng)。 A 思考:C的大小與它的對(duì)邊AB的長(zhǎng)度之間有怎樣的數(shù)量關(guān)系? 顯然,邊AB的長(zhǎng)度隨著其對(duì)角C的大小的增大而增大。能否 用一個(gè)等式把這種關(guān)系精確地表示出來(lái)? B C [探索研究] (圖1.1-1) 在初中,我們已學(xué)過(guò)如何解直角三角形,下面就首先來(lái)探討直角三角形中,角與邊的等式關(guān)系。如圖1.1-2,在RtABC中,設(shè)BC=a,AC=b,AB=c, 根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有,,又, A 則 b c 從而在直角三角形ABC中, C a B (圖1.1-2) 思考:那么對(duì)于任意的三角形,以上關(guān)系式是否仍然成立? (由學(xué)生討論、分析) 可分為銳角三角形和鈍角三角形兩種情況: 如圖1.1-3,當(dāng)ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)任意角三角函數(shù)的定義,有CD=,則, C 同理可得, b a 從而 A c B (圖1.1-3) 思考:是否可以用其它方法證明這一等式?由于涉及邊長(zhǎng)問(wèn)題,從而可以考慮用向量來(lái)研究這個(gè)問(wèn)題。 (證法二):過(guò)點(diǎn)A作, C 由向量的加法可得 則 A B ∴ ∴,即 同理,過(guò)點(diǎn)C作,可得 從而 類似可推出,當(dāng)ABC是鈍角三角形時(shí),以上關(guān)系式仍然成立。(由學(xué)生課后自己推導(dǎo))從上面的研探過(guò)程,可得以下定理 正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即 [理解定理]:(1)正弦定理說(shuō)明同一三角形中,邊與其對(duì)角的正弦成正比,且比例系數(shù)為同一正數(shù),即存在正數(shù)k使,,; (2)等價(jià)于,, 從而知正弦定理的基本作用為: ①已知三角形的任意兩角及其一邊可以求其他邊,如; ②已知三角形的任意兩邊與其中一邊的對(duì)角可以求其他角的正弦值。 一般地,已知三角形的某些邊和角,求其他的邊和角的過(guò)程叫作解三角形。 [例題分析]: 例1.在中,已知,,cm,解三角形。 解:根據(jù)三角形內(nèi)角和定理, ; 根據(jù)正弦定理,; 根據(jù)正弦定理, 評(píng)述:對(duì)于解三角形中的復(fù)雜運(yùn)算可使用計(jì)算器。 例2.在中,已知cm,cm,,解三角形(角度精確到,邊長(zhǎng)精確到1cm)。 解:根據(jù)正弦定理, 因?yàn)椋迹?,所以,? ⑴ 當(dāng)時(shí), , ⑵ 當(dāng)時(shí),, 評(píng)述:應(yīng)注意已知兩邊和其中一邊的對(duì)角解三角形時(shí),可能有兩解的情形。 [隨堂練習(xí)]第47頁(yè)練習(xí)1、2題。 例3.已知ABC中,A,,求 分析:可通過(guò)設(shè)一參數(shù)k(k>0)使, 證明出 解:設(shè) 則有,, 從而== 又,所以=2 評(píng)述: ABC中,等式恒成立。 [補(bǔ)充練習(xí)]已知ABC中,,求(答案:1:2:3) [課堂小結(jié)](由學(xué)生歸納總結(jié)) (1)定理的表示形式:; 或,, (2)正弦定理的應(yīng)用范圍:①已知兩角和任一邊,求其它兩邊及一角; ②已知兩邊和其中一邊對(duì)角,求另一邊的對(duì)角。 (五):①課后思考題:在ABC中,,這個(gè)k與ABC有什么關(guān)系? 作業(yè):第52頁(yè)[習(xí)題2.1]A組第7、4題。- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 正弦定理 2019-2020年高中數(shù)學(xué) 1.1正弦定理教案 北師大版必修5 2019 2020 年高 數(shù)學(xué) 1.1 正弦 定理 教案 北師大 必修
鏈接地址:http://m.zhongcaozhi.com.cn/p-2385318.html