高中數(shù)學(xué) 第三章 推理與證明 1.2 類比推理課件 北師大版選修1-2.ppt
《高中數(shù)學(xué) 第三章 推理與證明 1.2 類比推理課件 北師大版選修1-2.ppt》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 推理與證明 1.2 類比推理課件 北師大版選修1-2.ppt(32頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第三章——,推理與證明,[學(xué)習(xí)目標(biāo)],1.通過具體實(shí)例理解類比推理的意義. 2.會用類比推理對具體問題作出推斷.,1 歸納與類比 1.2 類比推理,,1,知識梳理 自主學(xué)習(xí),,2,題型探究 重點(diǎn)突破,,3,當(dāng)堂檢測 自查自糾,知識點(diǎn)一 類比推理,(1)類比推理的含義 由于兩類不同對象具有某些類似的特征,在此基礎(chǔ)上,根據(jù) ,推斷 ,這種推理過程稱為類比推理. 類比推理是 的推理.,一類對象的其他特征,另一類對象也具有類似的其他特征,兩類事物特征之間,(3)結(jié)論真假:利用類比推理得出的結(jié)論不一定是正確的. (4)思維過程流程圖:,(2)類比推理的特征 類比推理是從特殊到特殊的推理,簡稱類比.,思考 類比推理的結(jié)論能作為定理應(yīng)用嗎?,答 不能.因?yàn)轭惐韧评淼慕Y(jié)論不一定正確,只有經(jīng)過嚴(yán)格的邏輯證明,說明其正確性,才能進(jìn)一步應(yīng)用.,(1)合情推理的含義 根據(jù)實(shí)驗(yàn)和實(shí)踐的結(jié)果、個人的經(jīng)驗(yàn)和直覺、已有的事實(shí)和正確的結(jié)論(定義、公理、定理等),推測出某些結(jié)果的推理方式. 和 是最常見的合情推理.,歸納推理,類比推理,知識點(diǎn)二 合情推理,(2)思維過程流程圖,根據(jù) 和 ,按照 得到新結(jié)論的推理過程.,已知的事實(shí),正確的結(jié)論,嚴(yán)格的邏輯法則,知識點(diǎn)三 演繹推理,題型一 平面圖形與空間圖形的類比,例1 三角形與四面體有下列相似性質(zhì): (1)三角形是平面內(nèi)由直線段圍成的最簡單的封閉圖形;四面體是空間中由三角形圍成的最簡單的封閉圖形. (2)三角形可以看作是由一條線段所在直線外一點(diǎn)與這條線段的兩個端點(diǎn)的連線所圍成的圖形;四面體可以看作是由三角形所在平面外一點(diǎn)與這個三角形三個頂點(diǎn)的連線所圍成的圖形.,通過類比推理,根據(jù)三角形的性質(zhì)推測空間四面體的性質(zhì)填寫下表:,解,反思與感悟 將平面幾何中的三角形、長方形、圓、面積等和立體幾何中的三棱錐、長方體、球、體積等進(jìn)行類比,是解決和處理立體幾何問題的重要方法.,跟蹤訓(xùn)練1 類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列哪些性質(zhì),你認(rèn)為比較恰當(dāng)?shù)氖? ) ①各棱長相等,同一頂點(diǎn)上的任兩條棱的夾角都相等;②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;③各個面都是全等的正三角形,同一頂點(diǎn)上的任兩條棱的夾角都相等. A.① B.①② C.①②③ D.③,解析 由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理,叫類比推理,上述三個結(jié)論均符合推理結(jié)論,故均正確. 答案 C,例2 已知以下過程可以求1+2+3+…+n的和. 因?yàn)?n+1)2-n2=2n+1, n2-(n-1)2=2(n-1)+1, … 22-12=21+1, 有(n+1)2-1=2(1+2+…+n)+n,,題型二 解題方法的類比,類比以上過程求12+22+32+…+n2的和. 解 因?yàn)?n+1)3-n3=3n2+3n+1, n3-(n-1)3=3(n-1)2+3(n-1)+1, … 23-13=312+31+1,,有(n+1)3-1=3(12+22+…+n2)+3(1+2+3+…+n)+n,,反思與感悟 典型的數(shù)學(xué)方法往往可以解決一類問題,培養(yǎng)學(xué)生總結(jié)、反思、舉一反三的習(xí)慣,可以提高學(xué)生的知識遷移能力和靈活應(yīng)用知識的能力.而解決問題需要我們展開豐富的聯(lián)想,利用舊的知識幫助尋找思路或者將原問題降低難度,先解決較簡單的問題,再類比到復(fù)雜問題,常常可達(dá)到柳暗花明的成效.,解析 本題要求類比課本中等差數(shù)列的求和方法,即“倒序相加法”. 令t=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6), 則t=f(6)+f(5)+…+f(0)+…+f(-4)+f(-5),,例3 在等差數(shù)列{an}中,若a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N+)成立.類比上述性質(zhì),相應(yīng)的,在等比數(shù)列{bn}中,若b9=1,則有什么樣的等式成立?,題型三 等差數(shù)列與等比數(shù)列的類比,解 在等差數(shù)列{an}中,由a10=0,得a1+a19=a2+a18=…=an+a20-n=an+1+a19-n=2a10=0, 所以a1+a2+…+an+…+a19=0, 即a1+a2+…+an=-a19-a18-…-an+1, 又∵a1=-a19,a2=-a18,…,a19-n=-an+1, ∴a1+a2+…+an=a1+a2+…+a19-n, 相應(yīng)的,在等比數(shù)列{bn}中,若b9=1,則可得 b1b2…bn=b1b2…b17-n(n<17,n∈N+).,反思與感悟 1.在高中階段類比方向主要集中在等差數(shù)列與等比數(shù)列,平面幾何與立體幾何,平面向量與空間向量三個方面.2.在等差數(shù)列與等比數(shù)列的類比中,等差數(shù)列中的和類比等比數(shù)列中的積,差類比商,積類比冪. 如通項(xiàng)公式:an=a1+(n-1)d bn=b1qn-1.,,類比,,,1,2,3,1.下列平面圖形中可作為空間平行六面體類比對象的是( ) A.三角形 B.梯形 C.平行四邊形 D.矩形,C,4,1,2,3,2.下面幾種推理是類比推理的是( ) A.因?yàn)槿切蔚膬?nèi)角和是180(3-2),四邊形的內(nèi)角和是180(4-2),…,所以n邊形的內(nèi)角和是180(n-2) B.由平面三角形的性質(zhì),推測空間四面體的性質(zhì) C.某校高二年級有20個班,1班有51位團(tuán)員,2班有53位團(tuán)員,3班有52位團(tuán)員,由此可以推測各班都超過50位團(tuán)員 D.4能被2整除,6能被2整除,8能被2整除,所以偶數(shù)能被2整除,4,B,1,2,3,4,1,2,3,4,1,2,3,4,4.對于平面幾何中的命題“夾在兩平行線之間的平行線段相等”,在立體幾何中,類比上述命題,可以得到命題_______ _________________________.,平行平面間的平行線段相等,夾在兩,課堂小結(jié),類比推理的特點(diǎn) (1)類比推理是從人們已經(jīng)掌握了的事物的特征,推測正在被研究中的事物的特征,所以類比推理的結(jié)果具有猜測性,不一定可靠. (2)類比推理以舊的知識作基礎(chǔ),推測新的結(jié)果,具有發(fā)現(xiàn)的功能,類比在數(shù)學(xué)發(fā)現(xiàn)中具有重要作用,但必須明確,類比并不等于論證.,(3)由于類比推理的前提是兩類對象之間具有某些可以清楚定義的類似特征,所以進(jìn)行類比推理的關(guān)鍵是明確地指出兩類對象在某些方面的類似特征.,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第三章 推理與證明 1.2 類比推理課件 北師大版選修1-2 第三 推理 證明 類比 課件 北師大 選修
鏈接地址:http://m.zhongcaozhi.com.cn/p-2437588.html