2019-2020年高考數學復習 解析幾何問題的題型與方法教案 蘇教版.doc
《2019-2020年高考數學復習 解析幾何問題的題型與方法教案 蘇教版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數學復習 解析幾何問題的題型與方法教案 蘇教版.doc(20頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高考數學復習 解析幾何問題的題型與方法教案 蘇教版 一.復習目標: 1. 能正確導出由一點和斜率確定的直線的點斜式方程;從直線的點斜式方程出發(fā)推導出直線方程的其他形式,斜截式、兩點式、截距式;能根據已知條件,熟練地選擇恰當的方程形式寫出直線的方程,熟練地進行直線方程的不同形式之間的轉化,能利用直線的方程來研究與直線有關的問題了. 2.能正確畫出二元一次不等式(組)表示的平面區(qū)域,知道線性規(guī)劃的意義,知道線性約束條件、線性目標函數、可行解、可行域、最優(yōu)解等基本概念,能正確地利用圖解法解決線性規(guī)劃問題,并用之解決簡單的實際問題,了解線性規(guī)劃方法在數學方面的應用;會用線性規(guī)劃方法解決一些實際問題. 3. 理解“曲線的方程”、“方程的曲線”的意義,了解解析幾何的基本思想,掌握求曲線的方程的方法. 4.掌握圓的標準方程:(r>0),明確方程中各字母的幾何意義,能根據圓心坐標、半徑熟練地寫出圓的標準方程,能從圓的標準方程中熟練地求出圓心坐標和半徑,掌握圓的一般方程:,知道該方程表示圓的充要條件并正確地進行一般方程和標準方程的互化,能根據條件,用待定系數法求出圓的方程,理解圓的參數方程(θ為參數),明確各字母的意義,掌握直線與圓的位置關系的判定方法. 5.正確理解橢圓、雙曲線和拋物線的定義,明確焦點、焦距的概念;能根據橢圓、雙曲線和拋物線的定義推導它們的標準方程;記住橢圓、雙曲線和拋物線的各種標準方程;能根據條件,求出橢圓、雙曲線和拋物線的標準方程;掌握橢圓、雙曲線和拋物線的幾何性質:范圍、對稱性、頂點、離心率、準線(雙曲線的漸近線)等,從而能迅速、正確地畫出橢圓、雙曲線和拋物線;掌握a、b、c、p、e之間的關系及相應的幾何意義;利用橢圓、雙曲線和拋物線的幾何性質,確定橢圓、雙曲線和拋物線的標準方程,并解決簡單問題;理解橢圓、雙曲線和拋物線的參數方程,并掌握它的應用;掌握直線與橢圓、雙曲線和拋物線位置關系的判定方法. 二.考試要求: (一)直線和圓的方程 1.理解直線的斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據條件熟練地求出直線方程。 2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式,能夠根據直線的方程判斷兩條直線的位置關系。 3.了解二元一次不等式表示平面區(qū)域。 4.了解線性規(guī)劃的意義,并會簡單的應用。 5.了解解析幾何的基本思想,了解坐標法。 6.掌握圓的標準方程和一般方程,了解參數方程的概念,理解圓的參數方程。 (二)圓錐曲線方程 1.掌握橢圓的定義、標準方程和橢圓的簡單幾何性質。 2.掌握雙曲線的定義、標準方程和雙曲線的簡單幾何性質。 3.掌握拋物線的定義、標準方程和拋物線的簡單幾何性質。 4.了解圓錐曲線的初步應用。 三.教學過程: (Ⅰ)基礎知識詳析 高考解析幾何試題一般30分左右,考查的知識點約為20個左右。 其命題一般緊扣課本,突出重點,全面考查。選擇題和填空題考查直線、圓、圓錐曲線、參數方程和極坐標系中的基礎知識。解答題重點考查圓錐曲線中的重要知識點,通過知識的重組與鏈接,使知識形成網絡,著重考查直線與圓錐曲線的位置關系,求解有時還要用到平幾的基本知識和向量的基本方法,這一點值得強化。 (一)直線的方程 1.點斜式:;2. 截距式:; 3.兩點式:;4. 截距式:; 5.一般式:,其中A、B不同時為0. (二)兩條直線的位置關系 兩條直線,有三種位置關系:平行(沒有公共點);相交(有且只有一個公共點);重合(有無數個公共點).在這三種位置關系中,我們重點研究平行與相交. 設直線:=+,直線:=+,則 ∥的充要條件是=,且=;⊥的充要條件是=-1. (三)線性規(guī)劃問題 1.線性規(guī)劃問題涉及如下概念: ⑴存在一定的限制條件,這些約束條件如果由x、y的一次不等式(或方程)組成的不等式組來表示,稱為線性約束條件. ⑵都有一個目標要求,就是要求依賴于x、y的某個函數(稱為目標函數)達到最大值或最小值.特殊地,若此函數是x、y的一次解析式,就稱為線性目標函數. ⑶求線性目標函數在線性約束條件下的最大值或最小值問題,統(tǒng)稱為線性規(guī)劃問題. ⑷滿足線性約束條件的解(x,y)叫做可行解. ⑸所有可行解組成的集合,叫做可行域. ⑹使目標函數取得最大值或最小值的可行解,叫做這個問題的最優(yōu)解. 2.線性規(guī)劃問題有以下基本定理: ⑴ 一個線性規(guī)劃問題,若有可行解,則可行域一定是一個凸多邊形. ⑵ 凸多邊形的頂點個數是有限的. ⑶ 對于不是求最優(yōu)整數解的線性規(guī)劃問題,最優(yōu)解一定在凸多邊形的頂點中找到. 3.線性規(guī)劃問題一般用圖解法. (四)圓的有關問題 1.圓的標準方程 (r>0),稱為圓的標準方程,其圓心坐標為(a,b),半徑為r. 特別地,當圓心在原點(0,0),半徑為r時,圓的方程為. 2.圓的一般方程 (>0)稱為圓的一般方程, 其圓心坐標為(,),半徑為. 當=0時,方程表示一個點(,); 當<0時,方程不表示任何圖形. 3.圓的參數方程 圓的普通方程與參數方程之間有如下關系: (θ為參數) (θ為參數) (五)橢圓及其標準方程 1. 橢圓的定義:橢圓的定義中,平面內動點與兩定點、的距離的和大于||這個條件不可忽視.若這個距離之和小于||,則這樣的點不存在;若距離之和等于||,則動點的軌跡是線段. 2.橢圓的標準方程:(>>0),(>>0). 3.橢圓的標準方程判別方法:判別焦點在哪個軸只要看分母的大?。喝绻椀姆帜复笥陧椀姆帜福瑒t橢圓的焦點在x軸上,反之,焦點在y軸上. 4.求橢圓的標準方程的方法:⑴ 正確判斷焦點的位置;⑵ 設出標準方程后,運用待定系數法求解. (六)橢圓的簡單幾何性質 1. 橢圓的幾何性質:設橢圓方程為(>>0). ⑴ 范圍: -a≤x≤a,-b≤x≤b,所以橢圓位于直線x=和y=所圍成的矩形里. ⑵ 對稱性:分別關于x軸、y軸成軸對稱,關于原點中心對稱.橢圓的對稱中心叫做橢圓的中心. ⑶ 頂點:有四個(-a,0)、(a,0)(0,-b)、(0,b). 線段、分別叫做橢圓的長軸和短軸.它們的長分別等于2a和2b,a和b分別叫做橢圓的長半軸長和短半軸長. 所以橢圓和它的對稱軸有四個交點,稱為橢圓的頂點. ⑷ 離心率:橢圓的焦距與長軸長的比叫做橢圓的離心率.它的值表示橢圓的扁平程度.0<e<1.e越接近于1時,橢圓越扁;反之,e越接近于0時,橢圓就越接近于圓. 2.橢圓的第二定義 ⑴ 定義:平面內動點M與一個頂點的距離和它到一條定直線的距離的比是常數(e<1=時,這個動點的軌跡是橢圓. ⑵ 準線:根據橢圓的對稱性,(>>0)的準線有兩條,它們的方程為.對于橢圓(>>0)的準線方程,只要把x換成y就可以了,即. 3.橢圓的焦半徑:由橢圓上任意一點與其焦點所連的線段叫做這點的焦半徑. 設(-c,0),(c,0)分別為橢圓(>>0)的左、右兩焦點,M(x,y)是橢圓上任一點,則兩條焦半徑長分別為,. 橢圓中涉及焦半徑時運用焦半徑知識解題往往比較簡便. 橢圓的四個主要元素a、b、c、e中有=+、兩個關系,因此確定橢圓的標準方程只需兩個獨立條件. (七)橢圓的參數方程 橢圓(>>0)的參數方程為(θ為參數). 說明 ⑴ 這里參數θ叫做橢圓的離心角.橢圓上點P的離心角θ與直線OP的傾斜角α不同:; ⑵ 橢圓的參數方程可以由方程與三角恒等式相比較而得到,所以橢圓的參數方程的實質是三角代換. (八)雙曲線及其標準方程 1. 雙曲線的定義:平面內與兩個定點、的距離的差的絕對值等于常數2a(小于||)的動點的軌跡叫做雙曲線.在這個定義中,要注意條件2a<||,這一條件可以用“三角形的兩邊之差小于第三邊”加以理解.若2a=||,則動點的軌跡是兩條射線;若2a>||,則無軌跡. 若<時,動點的軌跡僅為雙曲線的一個分支,又若>時,軌跡為雙曲線的另一支.而雙曲線是由兩個分支組成的,故在定義中應為“差的絕對值”. 2. 雙曲線的標準方程:和(a>0,b>0).這里,其中||=2c.要注意這里的a、b、c及它們之間的關系與橢圓中的異同. 3.雙曲線的標準方程判別方法是:如果項的系數是正數,則焦點在x軸上;如果項的系數是正數,則焦點在y軸上.對于雙曲線,a不一定大于b,因此不能像橢圓那樣,通過比較分母的大小來判斷焦點在哪一條坐標軸上. 4.求雙曲線的標準方程,應注意兩個問題:⑴ 正確判斷焦點的位置;⑵ 設出標準方程后,運用待定系數法求解. (九)雙曲線的簡單幾何性質 1.雙曲線的實軸長為2a,虛軸長為2b,離心率>1,離心率e越大,雙曲線的開口越大. 2. 雙曲線的漸近線方程為或表示為.若已知雙曲線的漸近線方程是,即,那么雙曲線的方程具有以下形式: ,其中k是一個不為零的常數. 3.雙曲線的第二定義:平面內到定點(焦點)與到定直線(準線)距離的比是一個大于1的常數(離心率)的點的軌跡叫做雙曲線.對于雙曲線,它的焦點坐標是(-c,0)和(c,0),與它們對應的準線方程分別是和. 在雙曲線中,a、b、c、e四個元素間有與的關系,與橢圓一樣確定雙曲線的標準方程只要兩個獨立的條件. (十)拋物線的標準方程和幾何性質 1.拋物線的定義:平面內到一定點(F)和一條定直線(l)的距離相等的點的軌跡叫拋物線。這個定點F叫拋物線的焦點,這條定直線l叫拋物線的準線。 需強調的是,點F不在直線l上,否則軌跡是過點F且與l垂直的直線,而不是拋物線。 2.拋物線的方程有四種類型: 、、、. 對于以上四種方程:應注意掌握它們的規(guī)律:曲線的對稱軸是哪個軸,方程中的該項即為一次項;一次項前面是正號則曲線的開口方向向x軸或y軸的正方向;一次項前面是負號則曲線的開口方向向x軸或y軸的負方向。 3.拋物線的幾何性質,以標準方程y2=2px為例 (1)范圍:x≥0; (2)對稱軸:對稱軸為y=0,由方程和圖像均可以看出; (3)頂點:O(0,0),注:拋物線亦叫無心圓錐曲線(因為無中心); (4)離心率:e=1,由于e是常數,所以拋物線的形狀變化是由方程中的p決定的; (5)準線方程; (6)焦半徑公式:拋物線上一點P(x1,y1),F為拋物線的焦點,對于四種拋物線的焦半徑公式分別為(p>0): (7)焦點弦長公式:對于過拋物線焦點的弦長,可以用焦半徑公式推導出弦長公式。設過拋物線y2=2px(p>O)的焦點F的弦為AB,A(x1,y1),B(x2,y2),AB的傾斜角為α,則有①|AB|=x+x+p 以上兩公式只適合過焦點的弦長的求法,對于其它的弦,只能用“弦長公式”來求。 (8)直線與拋物線的關系:直線與拋物線方程聯立之后得到一元二次方程:x+bx+c=0,當a≠0時,兩者的位置關系的判定和橢圓、雙曲線相同,用判別式法即可;但如果a=0,則直線是拋物線的對稱軸或是和對稱軸平行的直線,此時,直線和拋物線相交,但只有一個公共點。 (十一)軌跡方程 ⑴ 曲線上的點的坐標都是這個方程的解; ⑵ 以這個方程的解為坐標的點都是曲線上的點. 那么,這個方程叫做曲線的方程;這條曲線叫做方程的曲線(圖形或軌跡). (十二)注意事項 1. ⑴ 直線的斜率是一個非常重要的概念,斜率k反映了直線相對于x軸的傾斜程度.當斜率k存在時,直線方程通常用點斜式或斜截式表示,當斜率不存在時,直線方程為x=a(a∈R).因此,利用直線的點斜式或斜截式方程解題時,斜率k存在與否,要分別考慮. ⑵ 直線的截距式是兩點式的特例,a、b分別是直線在x軸、y軸上的截距,因為a≠0,b≠0,所以當直線平行于x軸、平行于y軸或直線經過原點,不能用截距式求出它的方程,而應選擇其它形式求解. ⑶求解直線方程的最后結果,如無特別強調,都應寫成一般式. ⑷當直線或的斜率不存在時,可以通過畫圖容易判定兩條直線是否平行與垂直 ⑸在處理有關圓的問題,除了合理選擇圓的方程,還要注意圓的對稱性等幾何性質的運用,這樣可以簡化計算. 2. ⑴用待定系數法求橢圓的標準方程時,要分清焦點在x軸上還是y軸上,還是兩種都存在. ⑵注意橢圓定義、性質的運用,熟練地進行a、b、c、e間的互求,并能根據所給的方程畫出橢圓. ⑶求雙曲線的標準方程 應注意兩個問題:⑴ 正確判斷焦點的位置;⑵ 設出標準方程后,運用待定系數法求解. ⑷雙曲線的漸近線方程為或表示為.若已知雙曲線的漸近線方程是,即,那么雙曲線的方程具有以下形式: ,其中k是一個不為零的常數. ⑸雙曲線的標準方程有兩個和(a>0,b>0).這里,其中||=2c.要注意這里的a、b、c及它們之間的關系與橢圓中的異同. ⑹求拋物線的標準方程,要線根據題設判斷拋物線的標準方程的類型,再求拋物線的標準方程,要線根據題設判斷拋物線的標準方程的類型,再由條件確定參數p的值.同時,應明確拋物線的標準方程、焦點坐標、準線方程三者相依并存,知道其中拋物線的標準方程、焦點坐標、準線方程三者相依并存,知道其中一個,就可以求出其他兩個. (Ⅱ)范例分析 例1、求與直線3x+4y+12=0平行,且與坐標軸構成的三角形面積是24的直線l的方程。 分析:滿足兩個條件才能確定一條直線。一般地,求直線方程有兩個解法,即用其中一個條件列出含待定系數的方程,再用另一個條件求出此參數。 解法一:先用“平行”這個條件設出l 的方程為3x+4y+m=0①再用“面積”條件去求m,∵直線l交x軸于,交y軸于由,得,代入①得所求直線的方程為: 解法二:先用面積這個條件列出l的方程,設l在x軸上截距離a,在y軸上截距b,則有,因為l的傾角為鈍角,所以a、b同號,|ab|=ab,l的截距式為,即48x+a2y-48a=0②又該直線與3x+4y+2=0平行,∴,∴代入②得所求直線l 的方程為 說明:與直線Ax+By+C=0平行的直線可寫成Ax+By+C1=0的形式;與Ax+By+C=0垂直的直線的方程可表示為Bx-Ay+C2=0的形式。 例2、若直線mx+y+2=0與線段AB有交點,其中A(-2, 3),B(3,2),求實數m的取值范圍。 解:直線mx+y+2=0過一定點C(0, -2),直線mx+y+2=0實際上表示的是過定點(0, -2)的直線系,因為直線與線段AB有交點,則直線只能落在∠ABC的內部,設BC、CA這兩條直線的斜率分別為k1、k2,則由斜率的定義可知,直線mx+y+2=0的斜率k應滿足k≥k1或k≤k2, ∵A(-2, 3) B(3, 2) ∴ ∴-m≥或-m≤ 即m≤或m≥ 說明:此例是典型的運用數形結合的思想來解題的問題,這里要清楚直線mx+y+2=0的斜率-m應為傾角的正切,而當傾角在(0,90)或(90,180)內,角的正切函數都是單調遞增的,因此當直線在∠ACB內部變化時,k應大于或等于kBC,或者k小于或等于kAC,當A、B兩點的坐標變化時,也要能求出m的范圍。 例3、已知x、y滿足約束條件 x≥1, x-3y≤-4, 3x+5y≤30, 求目標函數z=2x-y的最大值和最小值. 解:根據x、y滿足的約束條件作出可行域,即如圖所示的陰影部分(包括邊界). 作直線:2x-y=0,再作一組平行于的直線:2x-y=t,t∈R. 可知,當在的右下方時,直線上的點(x,y)滿足2x-y>0,即t>0,而且直線往右平移時,t隨之增大.當直線平移至的位置時,直線經過可行域上的點B,此時所對應的t最大;當在的左上方時,直線上的點(x,y)滿足2x-y<0,即t<0,而且直線往左平移時,t隨之減小.當直線平移至的位置時,直線經過可行域上的點C,此時所對應的t最小. x-3y+4=0, 由 解得點B的坐標為(5,3); 3x+5y-30=0, x=1, 由 解得點C的坐標為(1,). 3x+5y-30=0, 所以,=25-3=7;=21-=. 例4、某運輸公司有10輛載重量為6噸的A型卡車與載重量為8噸的B型卡車,有11名駕駛員.在建筑某段高速公路中,該公司承包了每天至少搬運480噸瀝青的任務.已知每輛卡車每天往返的次數為A型卡車8次,B型卡車7次;每輛卡車每天的成本費A型車350元,B型車400元.問每天派出A型車與B型車各多少輛,公司所花的成本費最低,最低為多少? 解:設每天派出A型車與B型車各x、y輛,并設公司每天的成本為z元.由題意,得 x≤10, y≤5, x+y≤11, 48x+56y≥60, x,y∈N, 且z=350x+400y. x≤10, y≤5, 即 x+y≤11, 6x+7y≥55, x,y∈N, 作出可行域,作直線:350x+400y=0,即7x+8y=0. 作出一組平行直線:7x+8y=t中(t為參數)經過可行域內的點和原點距離最近的直線,此直線經過6x+7y=60和y=5的交點A(,5),由于點A的坐標不都是整數,而x,y∈N,所以可行域內的點A(,5)不是最優(yōu)解. 為求出最優(yōu)解,必須進行定量分析. 因為,7+85≈69.2,所以經過可行域內的整點(橫坐標和縱坐標都是整數的點)且與原點最小的直線是7x+8y=10,在可行域內滿足該方程的整數解只有x=10,y=0,所以(10,0)是最優(yōu)解,即當通過B點時,z=35010+4000=3500元為最小. 答:每天派出A型車10輛不派B型車,公司所化的成本費最低為3500元. 例5、已知點T是半圓O的直徑AB上一點,AB=2、OT=t (0- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數學復習 解析幾何問題的題型與方法教案 蘇教版 2019 2020 年高 數學 復習 解析幾何 問題 題型 方法 教案
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.zhongcaozhi.com.cn/p-2747988.html