2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 單元測(cè)試卷.doc
《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 單元測(cè)試卷.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 單元測(cè)試卷.doc(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 單元測(cè)試卷 一、選擇題(本大題共12小題,每小題5分,共60分.每小題中只有一項(xiàng)符合題目要求) 1.sin210cos120的值為( ) A. B.- C.- D. 答案 A 2.已知sin2α>0,且cosα<0,則角α的終邊位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案 C 解析 ∵cosα<0,sin2α=2sinαcosα>0,∴sinα<0.∴α為第三象限角.故選C. 3.若角α的終邊落在直線x+y=0上,則+的值等于( ) A.2 B.-2 C.-2或2 D.0 答案 D 解析 原式=+,又角α的終邊落在直線x+y=0上,∴|sinα|=|cosα|且sinα與cosα互為相反數(shù),∴+=0. 4.已知sin(-x)=,則cos(x+)=( ) A. B. C.- D.- 答案 A 解析 cos(x+)=cos[-(-x)]=sin(-x)=,選A. 5.若sinα>tanα>(-<α<),則α的取值范圍是( ) A.(-,-) B.(-,0) C.(0,) D.(,) 答案 B 解析 由sinα>tanα知,在-<α<的條件下,α的取值范圍是-<α<0.又在(-,0)區(qū)間內(nèi),使tanα>成立的是α∈(-,0),故選B. 6.已知sin2α=,則cos2(α-)=( ) A.- B.- C. D. 答案 D 解析 cos2(α-)====. 7.若將y=sin4x的圖像向左平移個(gè)單位長(zhǎng)度,得y=sin(4x+φ)的圖像,則φ等于( ) A.- B.- C. D. 答案 C 8.已知f(x)=2sin(ωx+φ)的部分圖像如圖所示,則f(x)的表達(dá)式為( ) A.f(x)=2sin(x+) B.f(x)=2sin(x+) C.f(x)=2sin(x+) D.f(x)=2sin(x+π) 答案 B 解析 由圖像知T=π-(-)=π?T=π. ∴ω==2π=. 又(π,2)為五點(diǎn)作圖法中的第二個(gè)關(guān)鍵點(diǎn), ∴π+φ=+2kπ,k∈Z. ∴φ=-π+2kπ,k∈Z. ∴f(x)=2sin(x-π+2kπ)=2sin(x+π). 9.將函數(shù)y=sin(6x+)圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,再向右平移個(gè)單位,得到的函數(shù)的一個(gè)對(duì)稱(chēng)中心是( ) A.(,0) B.(,0) C.(,0) D.(,0) 答案 A 解析 將函數(shù)y=sin(6x+)圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,得到函數(shù)y=sin(2x+)的圖像,再向右平移個(gè)單位,得到函數(shù)f(x)=sin[2(x-)+]=sin2x的圖像,而f()=0,故選A. 10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若acosA=bsinB,則sinAcosA+cos2B=( ) A.- B. C.-1 D.1 答案 D 解析 ∵acosA=bsinB,∴sinAcosA=sin2B. ∴sinAcosA+cos2B=sin2B+cos2B=1. 11.設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖像向右平移個(gè)單位長(zhǎng)度后,所得的圖像與原圖像重合,則ω的最小值等于( ) A. B.3 C.6 D.9 答案 C 解析 由題意可知,nT=(n∈N*), ∴n=(n∈N*). ∴ω=6n(n∈N*),∴當(dāng)n=1時(shí),ω取得最小值6. 12.已知函數(shù)f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π<φ≤π.若f(x)的最小正周期為6π,且當(dāng)x=時(shí),f(x)取得最大值,則( ) A.f(x)在區(qū)間[-2π,0]上是增函數(shù) B.f(x)在區(qū)間[-3π,-π]上是增函數(shù) C.f(x)在區(qū)間[3π,5π]上是減函數(shù) D.f(x)在區(qū)間[4π,6π]上是減函數(shù) 答案 A 解析 ∵T=6π,∴ω===. 又∵f()=2sin(+φ)=2sin(+φ)=2, ∴+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z. 又∵-π<φ≤π,∴φ=.∴f(x)=2sin(+). ∴f(x)的單調(diào)遞增區(qū)間為[-π+6kπ,+6kπ],單調(diào)遞減區(qū)間為[+6kπ,π+6kπ],k∈Z. 觀察各選項(xiàng),故選A. 二、填空題(本大題共4小題,每小題5分,共20分,把答案填在題中橫線上) 13.已知cosα=,cos(α+β)=-且α∈(0,),α+β∈(,π),則cosβ的值為_(kāi)_______. 答案 解析 ∵α∈(0,),α+β∈(,π),cosα=,cos(α+β)=-,∴sinα===, sin(α+β)===. ∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(-)+=. 14.在△ABC中,若b=5,∠B=,tanA=2,則sinA=________;a=________. 答案 ,2 解析 ∵tanA==2,∴sinA=.又∵b=5,B=,根據(jù)正弦定理,得a===2. 15.已知tan2θ=2tan2φ+1,則cos2θ+sin2φ的值為_(kāi)_______. 答案 0 解析 由tan2θ=2tan2φ+1,得 cos2θ===-. ∴cos2θ+sin2φ=-+sin2φ=-sin2φ+sin2φ=0. 16.下面有五個(gè)命題: ①函數(shù)y=sin4x-cos4x的最小正周期是π; ②終邊在y軸上的角的集合是{α|α=,k∈Z}; ③在同一坐標(biāo)系中,函數(shù)y=sinx的圖像和函數(shù)y=x的圖像有三個(gè)公共點(diǎn); ④把函數(shù)y=3sin(2x+)的圖像向右平移得到y(tǒng)=3sin2x的圖像; ⑤函數(shù)y=sin(x-)在[0,π]上是減函數(shù). 其中,真命題的編號(hào)是________.(寫(xiě)出所有真命題的編號(hào)) 答案 ①④ 解析 考查①y=sin2x-cos2x=-cos2x,所以最小正周期為π. ②k=0時(shí),α=0,則角α終邊在x軸上. ③由y=sinx在(0,0)處切線為y=x,所以y=sinx與y=x圖像只有一個(gè)交點(diǎn). ④y=3sin(2x+)圖像向右平移個(gè)單位得 y=3sin[2(x-)+]=3sin2x. ⑤y=sin(x-)=-cosx在[0,π]上為增函數(shù). 綜上知①④為真命題. 三、解答題(本大題共6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟) 17.(本小題滿分10分) 已知α為第三象限角, f(α)=. (1)化簡(jiǎn)f(α); (2)若f(α)=,求tan2α的值. 答案 (1)f(α)=-cosα (2) 解析 (1)f(α)==-cosα. (2)由f(α)=,得cosα=-.又因?yàn)棣翞榈谌笙藿?,所以sinα<0,所以sinα=-=-. 所以tanα==,故tan2α==. 18.(本小題滿分12分) 已知函數(shù)f(x)=sin2x-2sin(+x)cos(π-x). (1)求函數(shù)f(x)的單調(diào)遞增區(qū)間; (2)若f(-)=,α是第二象限角,求cos(2α+)的值. 答案 (1)[kπ-,kπ+](k∈Z) (2) 解析 (1)f(x)=sin2x-2cosx(-cosx)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1, 由2kπ-≤2x+≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z). 故函數(shù)f(x)的單調(diào)增區(qū)間為[kπ-,kπ+](k∈Z). (2)∵f(-)=2sinα+1=,∴sinα=. ∵α是第二象限角,∴cosα=-=-. ∴sin2α=-,cos2α=.∴cos(2α+)=cos2αcos-sin2αsin=-(-)=. 19.(本小題滿分12分) 在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且2cosAcosC(tanAtanC-1)=1. (1)求B的大小; (2)若a+c=,b=,求△ABC的面積. 答案 (1) (2) 解析 (1)由2cosAcosC(tanAtanC-1)=1,得 2cosAcosC(-1)=1. ∴2(sinAsinC-cosAcosC)=1. ∴cos(A+C)=-.∴cosB=. 又00)在區(qū)間[-,]上的最小值是-2,則ω的最小值等于( ) A. B. C.2 D.3 答案 B 解析 方法一:畫(huà)圖知[-,]內(nèi)包含最小值點(diǎn),∴≤,即≤,∴ω≥. 方法二:∵f(x)=2sinωx(ω>0)在區(qū)間[-,]上的最小值是-2時(shí),ωx=2kπ-,x=-(k∈Z), ∴-≤-≤,得?ω≥.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 單元測(cè)試卷 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 第四 單元測(cè)試
鏈接地址:http://m.zhongcaozhi.com.cn/p-3207674.html