冷滾打機(jī)床多功能夾具設(shè)計說明書
冷滾打機(jī)床多功能夾具設(shè)計說明書,冷滾打,機(jī)床,多功能,夾具,設(shè)計,說明書,仿單
開題報告論文(設(shè)計)題目 冷滾打機(jī)床多功能家具設(shè)計學(xué)生姓名 學(xué)號 指導(dǎo)教師1、研究本課題的目地和意義1.研究目地高速冷滾打技術(shù)是一種非常具有代表性的綠色、高精密、高效加工技術(shù)。該技術(shù)具有生產(chǎn)效率高、材料消耗少、加工成本低等優(yōu)點(diǎn),而且能較大程度上提高表面性能、延長產(chǎn)品使用壽命。在高速冷滾打成形過程中,表面微觀形貌是影響成形工件表面質(zhì)量的一個重要因素。目前為止,人們對高速冷滾打成形過程中的表面微觀形貌行程機(jī)理尚未探明,致使冷滾打成形工件表面質(zhì)量難以達(dá)到高精度的需求。本設(shè)計中主要針對冷滾打機(jī)床進(jìn)行多功能夾具設(shè)計,尤其是對冷滾打機(jī)床成形齒類零部件的特點(diǎn),對冷滾打機(jī)床夾具進(jìn)行設(shè)計,適用于多種零件的定位與夾緊,保證加工表面穩(wěn)定的位置精度;夾具的設(shè)計縮短了輔助時間,提高了生產(chǎn)夾具的使用,提高了生產(chǎn)效率。根據(jù)設(shè)計繪制出冷滾打機(jī)床多功能夾具三維圖。2.研究意義本設(shè)計的主旨在于設(shè)計一種冷滾打機(jī)床多功能夾具,設(shè)計此系統(tǒng)需要對冷滾打機(jī)床成形技術(shù)的基本原理有所理解,并對三維軟件有熟悉的運(yùn)用。其意義有:⑴保證加工精度弓箭的加工過程通過夾具進(jìn)行定位與夾緊、定位,保證了加工便面的位置精度。⑵縮短輔助時間,提高生產(chǎn)率家具的使用,提高了生產(chǎn)效率。⑶減輕工人的勞動強(qiáng)度,降低了對工人技術(shù)水平的要求,保證了安全生產(chǎn)。通過設(shè)計本課題,要清楚冷滾打成形基本原理。例如在設(shè)計設(shè)計多功能夾具時,要根據(jù)零件的不同和冷滾打機(jī)床的原理,對零件進(jìn)行定位與夾緊。2、國內(nèi)外的高速冷滾打機(jī)床發(fā)展?fàn)顩r1.國內(nèi)的高速冷滾打機(jī)床發(fā)展現(xiàn)狀及前景國內(nèi)進(jìn)行高速冷滾打成形技術(shù)的研究起始于 20 世紀(jì) 70 年代中期,主要研究內(nèi)容集中在高速冷滾打加工方法,滾打輪的設(shè)計理論、滾打輪運(yùn)動分析、滾打輪彈塑性修正等方面。天津市汽車傳動軸廠在 1972 年研制出一臺 LDY 700 型花鍵軸冷滾軋機(jī)床。但由于該型號的滾軋機(jī)床很大程度上屬于仿制產(chǎn)品,設(shè)計者并沒有完全掌握原機(jī)床的關(guān)鍵技術(shù),因此生產(chǎn)出的設(shè)備穩(wěn)定性差,致使其在應(yīng)用推廣方面比較遲慢。目前,國內(nèi)絕大多數(shù)的生產(chǎn)廠家在漸開線花鍵生產(chǎn)中仍采用花鍵軸銑床銑削加工等方法,僅有少數(shù)幾家大型企業(yè)如一汽、一拖、重汽、濟(jì)汽等引進(jìn)了國外的設(shè)備進(jìn)行花鍵的高速冷滾打加工。在引進(jìn)技術(shù)、設(shè)備的同時,這些工廠的技術(shù)人員也對花鍵的高速冷滾打加工工藝進(jìn)行了一定的研究,主要研究內(nèi)容集中在冷滾打機(jī)床的基本結(jié)構(gòu)、冷滾打運(yùn)動的基本形式、冷滾打工藝的經(jīng)濟(jì)效益分析、基于傳統(tǒng)加工原理的滾打輪設(shè)計以及冷滾打運(yùn)動實驗等方面。近幾年,國內(nèi)相關(guān)研究人員通過現(xiàn)代數(shù)值仿真方法對高速冷滾打的塑性成形過程進(jìn)行了研究。在花鍵的成形仿真研究方面。崔克天最早采用剛塑性有限元法對花鍵高速冷滾打過程進(jìn)行了模擬,通過后處理對其成形過程進(jìn)行了簡單的描述,分析了花鍵軸在冷滾打成形過程中容易產(chǎn)生前端塌陷等缺陷,并從力學(xué)角度分析了缺陷產(chǎn)生的原因。但是崔克天對花鍵冷滾打在具體的加工環(huán)境中金屬流動規(guī)律認(rèn)識,仍然停留在經(jīng)驗上。全建輝在此基礎(chǔ)上,通過使用彈塑性有限元法對花鍵冷滾打成形過程進(jìn)行了有限元仿真,對冷滾打成形過程中的金屬流動規(guī)律以及應(yīng)力應(yīng)變變化情況進(jìn)行了推理分析,并通過節(jié)點(diǎn)跟蹤的方法揭示了花鍵高速冷滾打中金屬流動趨勢,得到金屬流動遵循最小阻力定律的結(jié)論,同時還進(jìn)行了彈性恢復(fù)量的計算研究等。崔鳳奎分析了漸開線花鍵高速冷滾打過程,研究了漸開線花鍵高速冷滾打運(yùn)動關(guān)系及數(shù)學(xué)模型,高速冷滾打過程的動態(tài)響應(yīng)及其應(yīng)力波;從宏觀的角度揭示了漸開線花鍵高速冷滾打過程中的金屬流動規(guī)律和變形機(jī)理。徐永福對高速冷滾打花鍵金屬組織變形、殘余應(yīng)力分布和齒面質(zhì)量等進(jìn)行了深入研究,并得出高速冷滾打加工能夠改善花鍵表層金屬組織及殘余應(yīng)力分布狀況,使花鍵強(qiáng)度、齒面質(zhì)量和完整性得到明顯提高的結(jié)論。在冷滾打絲杠研究方面,何選景等建立了滾珠絲杠冷滾打的運(yùn)動關(guān)系模型,揭示了滾珠絲杠的成形原理,優(yōu)化了加工工藝參數(shù),得到了在合理參數(shù)下,應(yīng)力應(yīng)變和成形面的變化規(guī)律。李紛等建立了滾珠絲杠冷滾打的運(yùn)動關(guān)系數(shù)學(xué)模型,得到了滾打輪的軸向輪廓曲線,并進(jìn)一步建立了絲杠冷滾打的應(yīng)力波和有限元模型,獲得了高速冷滾打過程中應(yīng)力波的傳播規(guī)律及傳播速度,驗證了金屬流動最小阻力定律。趙智淵等建立了基于 ABAQUS 的有限元模型,在此基礎(chǔ)上對絲杠單次滾打正應(yīng)力、切應(yīng)力進(jìn)行了仿真,進(jìn)而獲得了變形力及其分力隨時間的變化情況。在滾打輪設(shè)計方面,崔鳳奎等根據(jù)高速冷滾打成形過程中滾打輪和制件之間的運(yùn)動關(guān)系,基于嚙合原理,運(yùn)用等升距螺旋面的形成理論,建立了滾打輪的理論廓形設(shè)計模型,根據(jù)該模型制造了滾打輪,進(jìn)行了花鍵加工實驗。針對高速冷滾打成形過程中制件彈性恢復(fù)對滾打輪理論廓形設(shè)計模型的影響,運(yùn)用實驗計算法對滾打輪的理論廓形設(shè)計模型進(jìn)行了修正,得到了符合實際生產(chǎn)要求的滾打輪廓形設(shè)計模型,并對漸開線花鍵滾打輪 CAD 系統(tǒng)及滾打輪磨削仿真系統(tǒng)進(jìn)行了開發(fā),研究了其中的主要算法。通過實際生產(chǎn)驗證了所建立的滾打輪廓形設(shè)計模型及其彈塑性修正方案的正確性和所開發(fā)的滾打輪 CAD 系統(tǒng)及滾打輪磨削仿真系統(tǒng)的實用性,解決了高速冷滾打成形技術(shù)中函待解決的問題,為滾打輪的設(shè)計和制造提供了可行的技術(shù)和工藝方案。楊建璽等采用范成法建立了滾打輪輪廓設(shè)計的數(shù)學(xué)模型,并對該模型進(jìn)行了實驗驗證。針對制件的彈塑性變形問題,將實驗測量數(shù)據(jù)反映到滾打輪坐標(biāo)系中,獲得了滾打輪輪廓的彈性變形修正量,實現(xiàn)了漸開線花鍵的高精度冷滾打成形加工。2.國外的高速冷滾打機(jī)床發(fā)展現(xiàn)狀及前景國外開展高速冷滾打成形的研究比較早,在上世紀(jì) 50 年代,不少研究人員為了提高輪齒的成形質(zhì)量,進(jìn)行了很多齒輪滾壓成形研究。到了上世紀(jì) 70 年代,波蘭的馬爾西尼亞克等人采用內(nèi)嚙合滾壓成形的加工技術(shù),創(chuàng)立了 WPM 方法,該方法是使用一對扇形的齒輪作為成形工具,通過兩個旋轉(zhuǎn)的軸帶動扇形滾刀運(yùn)動,將零件的齒形包絡(luò)出來。在加工過程中,刀具與零件之間的接觸弧增大,相對滑移的速度減小,從而使工具的使用壽命得到了顯著的增加。瑞士的 Ernst. Grob和 Krapfenbauer.建立了高速冷滾打花鍵和齒輪的 Grob 公司,到 20 世紀(jì) 60 年代外國其他國家將該項技術(shù)應(yīng)用到花鍵的加工中。Smirnov-Alyaev.G A 等提出了基于實驗數(shù)據(jù)研究花鍵冷滾打的可行性。通過實驗數(shù)據(jù)分析驗證了高速冷滾打成形過程中變形程度以及應(yīng)力分布的不均勻性和復(fù)雜性。ErnstGrob 等針對滾打輪的安裝傾角問題進(jìn)行了研究,采用在滾打輪與滾壓頭的聯(lián)結(jié)處增加一個止推環(huán)形成一個傾斜平面的方法,使?jié)L打輪按照預(yù)先合適的安裝傾角固定在滾壓頭上,提高了零件的加工精度。aleck. Mils]等對高速冷滾打成形產(chǎn)品和切削加工產(chǎn)品進(jìn)行了比較,指出了由于高速冷滾打成形產(chǎn)品的表面有一定的硬化層,其抗疲勞強(qiáng)度提高了 25%-35%o Krapfenbauer. H 等對采用高速冷滾打成形技術(shù)大批量生產(chǎn)零件進(jìn)行了研究,探討了冷滾打加工工藝并對加工零件的精度進(jìn)行了分析。 Kurz. N 等基于有限元理論對高速冷滾打過程中的塑性變形建立了仿真模型,并通過仿真與實驗中的擊打力、工件坯料的應(yīng)力值和應(yīng)變值相對比,驗證了仿真模擬的可靠性。Zella. L. Kahn-Jetter]等進(jìn)行了不同加載條件下高速冷滾打的接觸分析,形象描述了在扭矩不斷增大時應(yīng)力、應(yīng)變的變化情況和應(yīng)力集中分布情況,為花鍵高速冷滾打過程中應(yīng)力、應(yīng)變的求解提供了一種新的方法。目前,國外已有高速冷滾打機(jī)床設(shè)備,對高速冷滾打成形技術(shù)也有一定的研究成果,但是對其核心技術(shù)的報道不多。3、研究內(nèi)容本課題研究的主要內(nèi)容有:1.熟悉冷滾打機(jī)床的原理,為設(shè)計多功能夾具打下基礎(chǔ) 。2.根據(jù)冷滾打機(jī)床的原理設(shè)計多功能夾具。3.用三維軟件設(shè)計多功能夾具三維圖。4.對夾具主要零件進(jìn)行有限元分析。5.對夾具零件進(jìn)行三維模型組裝與運(yùn)動仿真。4、研究方案及步驟經(jīng)分析,本課題的設(shè)計可分為以下階段:第一階段:1)查閱相關(guān)資料,記錄所需的信息,確定可行性方案。2)理清研究思路,學(xué)習(xí)其他設(shè)計產(chǎn)品的優(yōu)秀方法。3)設(shè)計初期方案,初步計算夾具各部分所需承受載荷。第二階段:1)分析方案,對其進(jìn)一步優(yōu)化。2)初步確定方案,再次并對其可行性以及性能分析并改進(jìn)。3)對改進(jìn)后的結(jié)構(gòu)進(jìn)行分析,確定設(shè)計方案。 第三階段:1)使用三維軟件對夾具進(jìn)行設(shè)計和運(yùn)動仿真。2)最后根據(jù)分析結(jié)果,仿真結(jié)果,對其最后進(jìn)行改進(jìn)并反思總結(jié)。5、論文提綱1 摘要2 課題研究的意義及國內(nèi)外的發(fā)展2.1 目的和意義2.2 國內(nèi)外的發(fā)展2.2.1 國內(nèi)發(fā)展2.2.2 國外發(fā)展2.3 主要內(nèi)容3 冷滾打機(jī)床的介紹3.1 冷滾打機(jī)床的工作原理3.2 冷滾打機(jī)床成形零件表面微觀形貌的介紹3.3 冷滾打機(jī)床在實際中的應(yīng)用4 冷滾打機(jī)床夾具設(shè)計4.1 三維軟件 Creo2.0 的介紹4.2 多功能夾具的組成及三維模型4.3 夾具各零件的載荷分許與計算4.4 夾具主要部位的有限元分析與研究4.5 夾具的三維組裝與運(yùn)動分析5 模型的驗證與結(jié)果分析6 結(jié)論與展望7 總結(jié)參考文件附件參考文獻(xiàn)[1] 謝家瀛.組合機(jī)床設(shè)計簡明手冊[M].第一版. 北京:機(jī)械工業(yè)出版社,1994. [2] 機(jī)械工業(yè)出版社.機(jī)械原理[M].第一版.機(jī)械工業(yè)出版社,2001.[3] 徐錦康.機(jī)械設(shè)計[M].北京:機(jī)械工業(yè)出版社,2001.[4] 陳秀寧、施高義.機(jī)械設(shè)計課程設(shè)計[M].杭州:浙江大學(xué)出版社,1995 [5] 徐灝主編.機(jī)械設(shè)計手冊[M].第二版. 北京:機(jī)械工業(yè)出版社,2002.[6] 李慶壽.機(jī)床夾具設(shè)計[M].第一版.機(jī)械工業(yè)出版社,1984.[7] 大連理工大學(xué)工程畫教研室.機(jī)械制圖[M].北京:高等教育出版社,1993[8] 白成軒.機(jī)床夾具設(shè)計新原理.北京:機(jī)械工業(yè)出版社,1997指導(dǎo)教師意見及建議(從選題、理論與實證準(zhǔn)備、研究(設(shè)計)方法、工作安排等方面給出評價,并提出指導(dǎo)意見):指導(dǎo)教師簽名: 年 月 日畢業(yè)論文工作組意見及建議畢業(yè)論文工作組組長簽字: 年 月 日注:1.此表由學(xué)生填寫后,交指導(dǎo)教師簽署意見,經(jīng)畢業(yè)論文(設(shè)計)工作組審批后,才能開題。2.此表隨畢業(yè)論文裝訂并由學(xué)院存檔。冷滾打機(jī)床多功能夾具設(shè)計,學(xué)院:XXX
專業(yè):XXX
學(xué)號:XXX
姓名:XXX
指導(dǎo)教師:XXXX,目錄,研究目的,無專用夾具,→,設(shè)計多功能夾具,改進(jìn),→,→,縮短夾裝時間,提高生產(chǎn)效率,→,保證表面精度,冷滾打機(jī)床原理,多功能夾具設(shè)計,三維結(jié)構(gòu)設(shè)計,機(jī)構(gòu)運(yùn)動仿真、導(dǎo)出零件工程圖,,,,研究內(nèi)容,研究內(nèi)容,本文根據(jù)冷滾打成形的特點(diǎn),針對成形不同工件時夾緊與固定困難的問題,設(shè)計一種多功能夾具,使其適用于多種冷滾打成形零件的定位與夾緊,提高了夾具的使用率,同時提高了冷滾打成形零部件的生產(chǎn)效率。,主要內(nèi)容有:
根據(jù)冷滾打成形的基本原理,分析了冷滾打成形的特點(diǎn),及成形過程中零件夾裝存在的困難。
根據(jù)冷滾打機(jī)床成形工件的原理及特點(diǎn)設(shè)計能同時對齒輪、齒條、絲杠和花鍵進(jìn)行夾緊與固定的多功能夾具。
對夾具主要零件進(jìn)行有限元分析、三維模型組裝與運(yùn)動仿真。,研究內(nèi)容,冷滾打機(jī)床工作原理,絲杠成形原理,絲杠冷滾打加工是通過具有一定形狀的滾打輪對絲杠毛坯進(jìn)行局部斷續(xù)滾壓和擊打,使毛坯產(chǎn)生塑性變形,通過累積效應(yīng),在工件上形成絲杠螺旋滾道。其中,滾打輪安裝在高速旋轉(zhuǎn)的滾打軸上,并可繞自身軸線自轉(zhuǎn)。滾打輪接觸工件的瞬間,在工件與滾打輪之間摩擦力的作用下,滾打輪和工件之間的滾動,原理如右圖所示,β為絲杠螺旋升角。當(dāng)滾打輪擊打工件即滾打輪與工件接觸時,滾打輪自轉(zhuǎn)速度由接觸時的摩擦力和工件公轉(zhuǎn)速度決定,滾打輪和工件之間為純滾動運(yùn)動,保證了絲杠成形件的表面質(zhì)量和滾打輪的使用壽命。,冷滾打機(jī)床工作原理,齒輪成形原理,齒輪冷滾打成形是利用3個沿螺旋線均布的滾打輪對毛坯進(jìn)行斷續(xù)往復(fù)高速擊打,從而實現(xiàn)局部加載的多點(diǎn)累積變形的自由成形方法,如右圖所示。3個滾打輪沿螺旋線均布在打頭座上,并可繞自身軸線自由轉(zhuǎn)動,隨著滾打軸的高速旋轉(zhuǎn),打頭座每轉(zhuǎn)一周,3個滾打輪依次對齒坯進(jìn)行高速擊打,而在滾打輪與毛坯接觸的瞬間,滾打輪與工件之間的摩擦力作用促使?jié)L打輪做自轉(zhuǎn)運(yùn)動。,冷滾打機(jī)床工作原理,齒條成形原理,齒條冷滾打成形其工作原理如圖2.2所示。主要是利用齒條毛坯本身所具有的塑性,用特定齒廓、高速旋轉(zhuǎn)的滾打輪對齒坯進(jìn)行逐點(diǎn)斷續(xù)滾壓和擊打,使齒坯表層金屬產(chǎn)生塑性流動,從而獲得所需的廓形。三個滾打輪通過芯軸均勻地安裝在支撐軸上,并可繞自身的軸線(芯軸)轉(zhuǎn)動。當(dāng)滾打輪接觸到工件的時候,由于滾打輪和齒坯之間摩擦力的存在,滾打輪進(jìn)行自轉(zhuǎn),其自轉(zhuǎn)速度由工件的進(jìn)給速度和兩者接觸時的摩擦力確定,使得滾打輪和工件之運(yùn)動為純滾動。,冷滾打機(jī)床工作原理,花鍵軸冷滾打用一對與花鍵齒形一致的滾打輪對工件進(jìn)行不斷的滾打,使工件產(chǎn)生塑性變形而形成齒形的工藝過程。其工作原理如右圖所示。一對滾打輪安裝在滾打輪中心軸(滾打頭)上,其位置關(guān)于工件對稱,工件軸線與滾打輪軸線相互垂直。在滾打時,滾打輪繞中心軸高速旋轉(zhuǎn)并打入軸坯相互侵蝕,在滾打輪的作用下軸坯外圓部分金屬相應(yīng)產(chǎn)生局部凸起的等分位移,與此同時,滾打輪在摩擦力作用下可繞其自身的軸心自轉(zhuǎn),工件也沿著軸向做進(jìn)給運(yùn)動。滾打輪繞中心軸每旋轉(zhuǎn)一周,滾打工件一次,如此不斷滾打,從而在軸坯全長上均勻形成齒槽。,結(jié)構(gòu)設(shè)計,三維建模軟件Creo2.0,右圖為Creo2.0三維設(shè)計
軟件進(jìn)零件結(jié)構(gòu)設(shè)計,
裝配完成的齒輪成形夾具,圖中齒輪成形夾具由機(jī)床加工平面、兩側(cè)板、三爪卡盤、頂尖、階梯軸、支撐件、軸承組成。,三維建模軟件Creo2.0,結(jié)構(gòu)設(shè)計,右圖為Creo2.0三維設(shè)計軟件進(jìn)行零件結(jié)構(gòu)設(shè)計,裝配完成的絲杠成形夾具示意圖,主要有確定機(jī)床加工平面、三爪卡盤、頂尖、支撐件、角度測量、兩側(cè)板,軸承組成。,結(jié)構(gòu)設(shè)計運(yùn)動仿真,三維建模軟件Creo2.0,結(jié)構(gòu)設(shè)計,右圖為Creo2.0三維設(shè)計軟件進(jìn)行零件結(jié)構(gòu)設(shè)計,裝配完成的花鍵成形夾具示意圖,機(jī)構(gòu)由機(jī)床加工平面、側(cè)板、三爪卡盤、頂尖軸承組成。,有限元分析,使用Creo2.0有限元分析模塊,分析頂尖側(cè)支撐件,給定材料,確定零件約束,給零件施加載荷,進(jìn)行分析,分析結(jié)果如下圖所示。,結(jié)構(gòu)設(shè)計工程圖,使用creo2.0的繪圖模塊,依據(jù)已設(shè)計完成的結(jié)構(gòu)零件,用SolidWorks導(dǎo)出二維工程圖,如右圖所示旋轉(zhuǎn)氣缸連接件旋轉(zhuǎn)體工程圖。,總結(jié),在本次對冷滾打機(jī)床多功能夾具的設(shè)計中,查閱了大量的國內(nèi)外的冷滾打機(jī)床的相關(guān)知識,了解國內(nèi)外的冷滾打機(jī)床的發(fā)展現(xiàn)狀及趨勢,確定多功能夾具的研究內(nèi)容,做出設(shè)計方案。深刻了解冷滾打機(jī)床成形齒輪、齒條、花鍵和絲杠的加工原理,并根據(jù)冷滾打機(jī)床成形不同零件的工作原理,并對其進(jìn)行分析,構(gòu)思被加工件的夾裝方法及及夾具的夾裝方法。對多功能夾具構(gòu)思,設(shè)計冷滾打機(jī)床多功能夾具,分析冷滾打機(jī)床加工不同零件時被加工件及夾具的安裝方法,并設(shè)計對多功能夾具時遇到的問題進(jìn)行解決與優(yōu)化,使多功能夾具越來越符合生產(chǎn)加工的需要。,謝謝!,Study on the influence of rolling speed on rack cold roll-beating profileLimu Cui, Jiming XiaoFaculty of Mechanical and Precision Instrument Engineering,Xi’an University of technology, Xi, an 710048Abstract. As a new type of precision plastic forming technology, with material saving, low energy consumption, less pollution, high efficiency and good performance of products, high-speed cold roll-beating got rapid development. This paper studies the profile determinants of cold roll-beating. The impact of characterized parameters on alveolar outline forming is quantitatively described. The characterized parameters are alveolar width and alveolar bump height on both sides and so on. At the same time, experiment with single factor of roller rotation speed is performed, analysing the influence law of rolling speed on alveolar profile. Cold roll-beating equipment are carried out on cold roll -beating equipment modified from horizontal milling machine, the forming profile is analysed, so as to further improve the processing conditions and process parameters, providing a theoretical basis to deduce the generation of defects. Key words: cold roll-beating, flank profile, simulation, experiments1 IntroductionBased on the plasticity of material, precision plastic forming technology is a less cutting or no cutting method, the work piece is processed under the external force of tool and die. Cold roll-beating forming technology is a near net shape processing method. Taking advantage of the plasticity of metal, the blank is rolled and struck by high-speed rotating roller, forcing the metal flow, thereby forming the profile of work piece. As a new type of precision plastic forming technology, cold roll-beating forming technology can processed the product with good performance, high efficiency, material saving, low energyconsumption, less pollution and other significant characteristics, which aroused the attention of many scholars at home and abroad [1,2].In 1960’s, Grob company of Swiss applied cold roll-beating technology to the machining of spline, but its core techniques still secret to abroad[3]. Domestic, the study of cold roll-beating forming technology began in the 1970’s, the main research focused oncold roll-beating forming mechanism, roller’s design, roller’s installation method, parameter optimization[4,5,6]. Profile forming accuracy is the key factors that influence racktransmission precision and smoothness. During cold roll-beating forming process, the instability of metal plastic flow made alveolar profile’s change rule more complicated. Quantitative describe metal flow law to profile change is very difficult. At home and abroad, research on profile change during cold roll-beating forming is less. Study on the influence of rolling speed to profile form during rack cold roll-bearing forming in this article. On the basis of forming principle, to simulate influence law of rolling speed to alveolar width,alveolar both sides' bump height, distance between bump height and alveolar center, alveolar depth by using ABAQUS, to study the effect of rolling speed to alveolar profile, and verified by test, can provide reference for quality control of cold roll-beating forming.2 Cold roll-beating forming mechanismCold roll-beating forming which put the entity material function surface as the research object, local dynamic loading adopted by the way of discontinuous reciprocating struck, metal materials accumulation formed by forcing local flow, gradually required functionality surface formed . Its working principle is shown in the figure 1[7,8].Figure 1: High-speed cold roll-beating forming principle diagram3 Simulation analysis3.1 Establishment of simulation modelCold roll-beating dynamic model established in ABAQUS software, forming process simulated in ABAQUS. During cold rolling forming, the contact time between roller and work piece is short, and friction decreases under the action of roller rotates, the temperature of deformation part changed slowly, so assume uniform temperature and friction. Due to deforming force generated by the rolling and collisions between roller and work piece,negligible effect of roller rotation on rolling force .The work piece material in-compressible and the initial isotropic[9,10].In order to shorten calculation time, improve calculation efficiency, the model assumed and appropriate simplified. For does not affect the simulation results, roller shaft save installed, according to a certain movement and spatial relationship, rollers and work piece model is set up as shown in the figure 2. The roller radius is 72 mm, the work piece length is 13 mm, width is 24 mm and height is 8 mm. Rolling radius is 73 mm, to 1 mm in depth. Choose analytical rigid as roller material, the work piece material is LY12 , density is 2770 kg/m3, the elastic modulus is 73GPa , Poisson's ratio is 0.33.Figure 2: The finite element model of cold roll-beating forming3.2 Rolling speed effects on profileWhen roller hits blank, rolling gear addendum directly hit on the blank surface, form the alveolar bottom. And metal on both sides of rollers, a part formed alveolar wall squeezed by rollers, the other part formed the bumps on either side of alveolar along roller side wall upward mobility, then the bump flow to the part of less resistance, thus forming the outline of alveolar shape, as shown in the figure 3. The alveolar width is B, alveolar bump on the left side is hL, the right is hR , the distance between alveolar center and bump height is L, alveolar depth is H.Figure 3: Schematic diagram of alveolar profileDuring cold roll-beating forming, roller rotation speed is one of the key factors affecting metal plastic flow, on the condition of different rolling speed, the metal material of heat, heat conduction rate, deformation temperature, deformation rate, the flow of metal are not identical, thus large difference existed in the final forming of alveolar outline. When rolling model remains unchanged, and under the condition of other parameters do not change, change the rolling speed, the alveolar profile has changed. As shown in figure 4, the changes of rolling speed affect the alveolar profile. When roller revolution speed increases from 500r/min to 750r/min, alveolar bottom stress is large, the stress mainly concentrated in the root. When roller revolution speed is 1000 r/min, alveolar become wider, stress of alveolar root and on either side of alveolar are large, alveolar profile shape out of rules and a slight deviation between alveolar profile shape and roller. Revolution speed increases to 2000 r/min, less stress and scattered into the work piece, the stress concentration in root and work piece inside. When the revolution speed reach to 3000 r/min, there is no obvious change in alveolar profile surface stress, but stress between two alveolar bump is large, the inside of work piece is not directly exposed to roller , but the stress is large too. Revolution speed is 4000 r/min, the alveolar profile is relatively perfect, alveolar root and alveolar flank and the work piece internal stress is moderate, the distribution is uniform.(a)n=500 (b)n=750 (c)n=1000(d)n=2000 (e)n=3000 (f)n=4000Figure 4: Alveolar profile under different rolling speedIn ABAQUS software, at different rolling speed, each alveolar parameters measuring and data analysis. Observe the change trend of alveolar parameters; curves are as shown in the figure 5 to figure 8.Figure 5: Alveolar width curve changed by rolling speedFigure 6: Alveolar both sides' bump height curve changed by rolling speedThe figure 5 is alveolar width curve changed by rolling speed, the roller revolution speed increasing, the alveolar width increases firstly and then decreases to substantially unchanged when reaching a certain rotating speed. Strain rate increased by roller revolution speed increasing, the true stress becomes large, alveolar width also increases. The revolution speed is higher, each time interval of roller stroke blank metal is shorter. In a certain period of time, the number of roller hit gear blank increased, the first work piece’s material is flowing as plastic, the next struck again, which made the flow resistance of materials reduced in a certain extent, rolling deformation force also decrease, the strain rate decreased, so the space width decreases.The figure 6 is the alveolar both sides' bump height curve changed by rolling speed, the alveolar both sides' bump height increased by the revolution speed increasing. In a certain range of rolling speed increased, caused the strain rate changed small, the degree of materials’ hardening is litter, alveolar both sides increased quickly. With the revolution speed continues increasing, the material hardening degree is high, and the metal flow decreased, thus alveolar both sides decreased.Figure 7: Alveolar depth curve changed by rolling speedFigure 8: The curve of distance between bump and alveolar center changed by rolling speedThe figure 7 is the alveolar depth curve changed by rolling speed, the alveolar depth increased by the roller revolution speed increasing. When the roller revolution speed increases, the number of the alveolar bottom metal hit by roller per unit time increased, metal flow rate increased, plastic strain increased, the alveolar depth increases. The greater the rolling speeds, the stronger the dynamic impact effects. While the plastic deformation region concentrated, limit of plastic deformation zone and elastic deformation area will become smaller, and the elastic strain zone decreases, alveolar depth decreases.The figure 8 is the curve of distance between bump and alveolar center changed by rolling speed. The distance between bump and alveolar center increased first and then decreased by the roller revolution speed increasing. The changing trends of distance between bump and alveolar center are related to bump and alveolar depth. The change rules are roughly the same with bump and alveolar depth.4 Study of cold roll-beating experimentThe purpose of this experiment is that according to the cold roll-beating experiment, by changing the roller revolution speed to measure the final alveolar forming outline, then compares and analysis the experiment results and simulation results. The experiment is carried out with self- developed cold roll- beating experimental equipment, and the roller material is 40Cr, the work piece material is LY12 and red copper.4.1 The device of experimentThis experiment is done on the horizontal milling machine; the cutter is replaced by the special cold-roll beating device. As shown in the figure 9 is the physical picture of cold-roll beating device.4.2 Analysis of experiment resultsIn this paper, the cold-roll beating experiment is conducted on hard aluminum and red copper, the roller module is 2mm, and the roller revolution radius is 49mm, rotation radius is 24mm .As shown in the figure 10 is the cold roll-beating results of aluminum, the roller revolution speed is 1500r/min. In the picture the alveolar outline can be clearly seen, the addendum rolled up can be obviously observed in the local amplification figure, this is because metal flow that the roller extrudes the alveolar bottom. At the same time, the bump height of middle alveolar both sides is roughly equal, and the outline is uniform and symmetric, the two are consistent with the previous simulation results. This is due to that the metal of close to middle alveolar side is extruded by the two rollers, the metal flowing restricted at a certain extent, so there was no obvious difference of bumps on both sides.As shown in the figure 11 is the cold roll-beating results of copper, the depth of the roller hit into the work piece is 1mm, the feed speed of work piece is 60mm/min, the roller revolution speed is 1500r/min. From the figure the metal plastic liquidity of copper is bigger than the hard aluminum can be clearly seen along the tangential; the hardness of copper is smaller than hard aluminum. When the depth of the roller hit into the work piece at the equal lever and the same with the feed speed of work piece , the bigger hardness, the smaller metal plastic liquidity. The materials have lower hardness, the plastic flow is relatively easy, so the metal plastic liquidity of copper along tangential is bigger than hard aluminum. The metal flowed along tangential not only affects the contour shape of material, but also should increase the operation to get rid. This not only waste materials, but also make the processing time longer, reduce the production efficiency, so research the alveolar profile of roller and process parameters is a key to improve the quality of cold-roll beating forming.Figure 9: Cold roll-beating machineFigure 10: Hard aluminum cold roll beating test resultsFigure 11: Copper cold roll-beating test results5 Conclusion(1) Using the alveolar width, alveolar bump on both sides, the distance between alveolar center and bump height, alveolar depth to quantitatively show the alveolar profile after formed. The dynamic simulation models of cold roll-beating established in the ABAQUS, and the rack cold roll-beating simulated, the results of simulation analyzed.(2)Conducting the single factor variables experiments by changing the roller revolution speed, analyzing the metal flow law, then get the influence law of roller revolution speed to alveolar profile. In the later phase, multiple factors experiments and study interactions between multiple factors will conducted, which supply more theoretical basis for improve the quality of cold roll- beating.AcknowledgementThe corresponding author was Limu Cui. This research is supported by National Natural Science Foundation of China (Grant No. 51475366, 51475146) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM5074).References1. Zhang Lu, Li Yan, Yang Mingshun, et al. Recent Development of Incremental Forming [J]. Aerospace material process, pp. 32-38(2011)2. Zhao Ning, Mao Yongjie. The modern machinery manufacturing technology and development trend [J]. Science and technology innovation and application, pp.125(2013)3. Wang Zhongren, Teng Bugang, Tang Zejun. New Development on Technology of Plasticity[J]. China Mechanical Engineering, 20(1), pp. 108-112(2009)4. Cui Fengkui, Zhu Wenjuan, Wang Xiaoqiang, Zhang Fengshou. Current research and development trends of high-speed cold rolling technology[J]. Journal of Henan Polytechnic University (Natural Science), 31(2), pp. 191-195(2012)5. Li Yan, Yang Mingshun, Li Bin, et al. Dynamics Simulation and Analysis of Lead Screw Cold Roll-Beating[J]. Journal of Xi’an University of Technology, 25(4), pp. 383-387(2009)6. Cui Fengkui, Guo Chao, Li Yuxi. 40Cr Steel Plastic Flow Stress and Constitutive Relations[J]. Journal of Henan Polytechnic University (Natural Science), 33(6), pp. 1-5(2012)7. Zhang Lu, Yang Mingshun, Li Yan, et al. Analytic method and its modification for deformation force of high-speed cold roll-beating forming[J]. Journal of Plasticity Engineering, 18(5), pp. 1-7(2011)8. Cui Fengkui, Xu Yongfu, Zhao Wei.Research on metal microstructure deformation of splines manufactured by cold rolling,milling and cutting processes[J]. Forging and Stamping Technology, 33(2), pp. 70-74(2008)9. Zhang Lu, Li Yan, Yang Mingshun, et al. Study on Metal Flowing of Lead Screw Cold Roll-beating Forming[J]. China Mechanical Engineering, 23(13), pp. 1623-1628(2012)10. Zhao Zhiyuan,Yang Mingshun, Yuan Qilong, et al. Deformation Force Simulation of Lead Screw Cold Roll-beating Based on ABAQUS[J]. Foundry Technology, 32(8), pp. 1165-1169(2011)軋制速度對機(jī)架冷輥跳動剖面影響的研究栗木翠, 鳴鳴小機(jī)械精密儀器工程系,西安理工大學(xué), 西安, 710048抽象 . 作為一種新型精密塑性成形技術(shù), 具有的 材料節(jié)約、能耗低、污染少、效率高、產(chǎn)品性能好、高速冷滾打得到了飛速的發(fā)展。本文研究了冷滾軋的剖面決定因素。定量描述了特征參數(shù)對肺泡輪廓形成的影響。其特征參數(shù)為牙槽寬度和牙槽凹凸高度。同時, 對滾子轉(zhuǎn)速單因素進(jìn)行了試驗, 分析了軋制速度對牙槽剖面的影響規(guī)律。對臥式銑削機(jī)改造的冷滾軋設(shè)備進(jìn)行了冷輥跳動設(shè)備的分析, 對成形剖面進(jìn)行了進(jìn)一步的改進(jìn), 為進(jìn)一步提高加工條件和工藝參數(shù)提供了理論依據(jù), 為推斷出缺陷的產(chǎn)生。 關(guān)鍵詞: 冷輥跳動, 側(cè)面剖面, 模擬, 實驗1 介紹在材料塑性的基礎(chǔ)上, 精密塑性成形技術(shù)是一種減少切削或無切削的方法, 工件在刀具和模具的外力下加工。冷彎輥成形技術(shù)是一種近凈形狀加工方法。利用金屬的塑性, 通過高速旋轉(zhuǎn)滾筒軋制和撞擊毛坯, 迫使金屬流動, 從而形成工件輪廓。冷彎輥成形技術(shù)作為一種新型的精密塑性成形技術(shù), 可以加工出性能好、效率高、材料節(jié)約、能耗低的產(chǎn)品。消費(fèi)、污染等顯著特征, 引起國內(nèi)外眾多學(xué)者的關(guān)注 [12] .1960 年, 瑞士格勞博公司將冷軋輥技術(shù)應(yīng)用于花鍵的加工, 但其核心技術(shù)仍為海外保密 [3] 。國內(nèi), 冷軋輥成形技術(shù)的研究始于 1970, 主要研究集中在冷滾軋成形機(jī)構(gòu)、滾筒設(shè)計、滾筒安裝方法、參數(shù)優(yōu)化 [45、6] 。型材成形精度是影響機(jī)架的關(guān)鍵因素傳動精度和平滑度。在冷彎輥成形過程中, 金屬塑性流動的不穩(wěn)定性使得牙槽剖面的變化規(guī)律更為復(fù)雜。定量描述金屬流動規(guī)律對剖面變化是非常困難的。國內(nèi)外對冷彎輥成形過程中剖面變化的研究較少。在機(jī)架冷輾壓成形過程中, 軋制速度對型材形態(tài)的影響研究。在形成原理的基礎(chǔ)上, 模擬了軋制速度對牙槽寬度的影響規(guī)律,牙槽兩側(cè)的凹凸高度、凹凸高度與肺泡中心之間的距離、牙槽深度的應(yīng)用, 研究了軋制速度對牙槽剖面的影響, 并通過試驗驗證, 可為冷軋輥的質(zhì)量控制提供參考。形成。2 冷滾打成型機(jī)構(gòu)將實體材料功能面作為研究對象的冷彎輥成形, 局部動態(tài)加載采用不連續(xù)往復(fù)撞擊的方式, 通過強(qiáng)制局部流形成的金屬材料積累, 逐漸需要形成的功能曲面。其工作原理見圖 1 [78] .圖 1 高速冷輥跳動成形原理圖3 仿真分析3.1 仿真模型的建立在 abaqus 軟件中建立了冷軋輥跳動動態(tài)模型, 模擬了 abaqus 的成形過程。在冷軋成型過程中, 軋輥與工件之間的接觸時間短, 在滾子旋轉(zhuǎn)的作用下摩擦力減小, 變形部分的溫度變化緩慢, 因此應(yīng)采用均勻的溫度和摩擦力。由于軋輥和工件之間的軋制和碰撞產(chǎn)生的變形力,對滾子旋轉(zhuǎn)對軋制力的影響為微不足道。工件材料可壓縮和初始各向同性 [910] .為了縮短計算時間, 提高計算效率, 模型假設(shè)和適當(dāng)簡化。對于不影響仿真結(jié)果, 輥軸保存安裝, 根據(jù)一定的運(yùn)動和空間關(guān)系, 對滾筒和工件模型進(jìn)行了設(shè)置, 如圖 2 所示。滾筒半徑為 72 毫米, 工件長度為 13 毫米, 寬度為 24 毫米, 高度為 8 毫米. 軋制半徑為 73 毫米, 深度為 1 毫米。選擇分析剛性為滾筒材料, 工件材質(zhì)為 LY12, 密度為2770 千克/米 3, 彈性模量為 73GPa, 泊松比為 0.33.圖 2: 冷滾軋成形的有限元模型3.2 軋制速度對型材的影響當(dāng)滾子命中空白時, 滾動齒輪的附錄直接擊中空白表面, 形成肺泡底部。和金屬在滾筒兩側(cè), 部分形成了由滾筒擠壓的牙槽壁, 另一部分形成了牙槽兩側(cè)的凸起沿輥側(cè)壁向上移動, 然后將凹凸流到部分阻力較小, 從而形成肺泡輪廓。形狀, 如圖 3 所示。肺泡寬度為 B, 左側(cè)的肺泡突起為 h L, 右側(cè)為 h R ,肺泡中心與凹凸高度之間的距離為 L, 肺泡深度為 h.圖 3: 齒槽輪廓示意圖在冷輾壓成形過程中, 軋輥轉(zhuǎn)速是影響金屬塑性流動的關(guān)鍵因素之一, 在不同軋制速度、熱傳導(dǎo)速率、變形溫度、變形速率、流量金屬不完全相同, 因此在肺泡輪廓的最終形成中存在較大的差異。當(dāng)軋制模型保持不變時, 在其它參數(shù)不變的情況下, 改變軋制速度, 使齒槽剖面發(fā)生變化。如圖 4 所示, 滾動速度的變化會影響牙槽剖面。當(dāng)滾子轉(zhuǎn)速從 500 r/分鐘增加到 750 r/分鐘時, 肺泡底部應(yīng)力較大, 應(yīng)力主要集中在根部。當(dāng)滾子轉(zhuǎn)速為 1000/分鐘時, 肺泡變寬, 肺泡根部和肺泡兩側(cè)的應(yīng)力較大, 肺泡輪廓形狀不規(guī)則, 牙槽形狀與滾筒之間稍有偏差。轉(zhuǎn)速增加到 2000 r/分鐘, 減少應(yīng)力, 分散到工件, 在根部和工件內(nèi)的應(yīng)力集中。當(dāng)轉(zhuǎn)速達(dá)到 3000/分鐘時, 牙槽剖面表面應(yīng)力沒有明顯的變化, 但兩個牙槽凸度之間的應(yīng)力較大, 工件內(nèi)部不直接暴露在滾筒上, 但應(yīng)力也較大。轉(zhuǎn)速為 4000 r/分鐘, 肺泡剖面相對完善, 肺泡根部和肺泡側(cè)面和工件內(nèi)應(yīng)力適中, 分布均勻。(a) n = 500 ( b)n= 750 (c)n= 1000(d) n = 2000 ( e)n= 3000 (f)n= 4000圖 4: 不同軋制速度下的牙槽剖面在 ABAQUS 軟件中, 在不同的軋制速度下, 每個齒槽參數(shù)的測量和數(shù)據(jù)分析。觀察肺泡參數(shù)的變化趨勢;曲線如圖 5 所示, 見圖 8。圖 5: 通過軋制速度改變牙槽寬度曲線圖 6: 牙槽兩側(cè)的凹凸高度曲線隨軋制速度而變化圖 5 為齒槽寬度曲線隨軋制速度而改變, 滾子轉(zhuǎn)速增加, 齒槽寬度先增大后減小到一定轉(zhuǎn)速時大幅度改變。隨著滾子轉(zhuǎn)速的增加, 應(yīng)變速率增大, 真正的應(yīng)力變大, 肺泡寬度也增大。轉(zhuǎn)速越高, 每一次軋輥行程毛坯金屬的間隔時間越短。在一定的時間內(nèi), 軋輥命中齒輪坯的數(shù)量增加, 第一工件的材料作為塑料流動, 下一次再次撞擊, 使材料的流動阻力在一定程度上降低, 軋制變形力也降低,應(yīng)變速率減小, 空間寬度減小。圖 6 為牙槽兩側(cè)的凹凸高度曲線隨軋制速度而變化, 肺泡兩側(cè)的凹凸高度隨轉(zhuǎn)速的增加而增大。在一定范圍內(nèi)的軋制速度增加, 導(dǎo)致應(yīng)變率變小, 材料硬化程度為凋落物, 肺泡兩側(cè)迅速增加。隨著轉(zhuǎn)速的不斷提高, 材料硬化程度高, 金屬流減小, 肺泡兩側(cè)減小。圖 7: 通過軋制速度改變牙槽深度曲線圖 8: 按軋制速度變化的凹凸槽中心距離曲線圖 7 為齒槽深度曲線隨軋制速度變化, 齒槽深度隨輥輪轉(zhuǎn)速的增加而增大。當(dāng)輥道轉(zhuǎn)速增大時, 齒槽底金屬的數(shù)量隨機(jī)組時間的推移而增加, 金屬流速增加, 塑性應(yīng)變增加, 肺泡深度增大。滾動速度越大, 動態(tài)沖擊效應(yīng)越強(qiáng)。塑性變形區(qū)集中、塑性變形區(qū)極限和彈性變形區(qū)變小, 彈性應(yīng)變區(qū)減小, 肺泡深度減小。圖 8 是凸點(diǎn)和牙槽中心之間的距離曲線, 由軋制速度改變。隨著滾子轉(zhuǎn)速的增加, 凸點(diǎn)與牙槽中心之間的距離先增大后減小。凹凸和肺泡中心距離的變化趨勢與凹凸和肺泡深度有關(guān)。變化規(guī)則大致相同的凹凸和肺泡深度。4 冷軋輥跳動實驗研究本實驗的目的是根據(jù)冷軋輥跳動實驗, 通過改變滾子轉(zhuǎn)速來測量最終的牙槽成形輪廓, 然后比較分析實驗結(jié)果和仿真結(jié)果。本實驗采用自行研制的冷滾軋試驗裝置, 軋輥材料為 40Cr, 工件材料為 LY12 和紅銅。4.1 實驗裝置本試驗是在臥式銑床上進(jìn)行的;刀具被特殊的冷輥跳動裝置所取代。如圖 9 所示, 是冷輥跳動裝置的物理圖像。4.2 實驗結(jié)果分析本文對硬鋁和紅銅進(jìn)行了冷軋輥跳動試驗, 軋輥模塊為 2mm, 軋輥回轉(zhuǎn)半徑為 49mm, 旋轉(zhuǎn)半徑為 24mm。如圖 10 所示, 鋁的冷軋輥跳動的結(jié)果, 滾筒轉(zhuǎn)速是 1500 r/分鐘。在圖片中可以清楚地看到肺泡輪廓, 在局部放大圖中可以明顯觀察到增編, 這是因為金屬流的滾筒擠出了肺泡底部。同時, 中間牙槽兩側(cè)的凹凸高度大致相等, 輪廓均勻?qū)ΨQ, 兩者與以往的模擬結(jié)果一致。這是由于接近中牙槽側(cè)的金屬被兩個滾筒擠壓, 金屬在一定程度上受限, 因此兩側(cè)的顛簸沒有明顯的差異。如圖 11 所示的是銅的冷滾軋結(jié)果, 滾筒撞擊工件的深度為 1mm, 工件的進(jìn)料速度為60 毫米/分, 輥輪轉(zhuǎn)速為 1500/分鐘。從圖上看, 金屬塑料的流動性比硬鋁更大, 可以沿切線清晰地看到;銅的硬度比硬鋁小。當(dāng)軋輥的深度撞到工件的同等杠桿和進(jìn)料速度相同的工件時, 硬度越大, 金屬塑料的流動性越小。該材料硬度較低, 塑性流動相對容易, 因此銅沿切線的金屬塑性流動性大于硬鋁。金屬沿切線流動不僅影響材料的輪廓形狀, 而且還應(yīng)增加操作的去除。這不僅浪費(fèi)了材料, 而且使加工時間更長, 降低了生產(chǎn)效率, 因此研究軋輥的齒槽剖面和工藝參數(shù)是提高冷軋輥跳動質(zhì)量的關(guān)鍵。圖 9: 冷打輥機(jī)圖 10: 硬鋁冷軋輥跳動試驗結(jié)果圖 11: 銅冷輥跳動試驗結(jié)果5 結(jié)論(1) 使用牙槽寬度、兩側(cè)肺泡腫塊、肺泡中心與凹凸高度之間的距離、肺泡深度定量顯示后形成的肺泡輪廓。建立了基于 ABAQUS 的冷滾軋動態(tài)仿真模型, 并對機(jī)架冷滾打模擬結(jié)果進(jìn)行了仿真分析.(2) 通過改變滾筒轉(zhuǎn)速, 分析金屬流動規(guī)律, 進(jìn)行單因素變量實驗, 得出滾子轉(zhuǎn)速對齒槽剖面的影響規(guī)律。在后一階段, 多因素實驗和研究多因素相互作用, 為提高冷軋輥的質(zhì)量提供了理論依據(jù).確認(rèn)相應(yīng)的作者是栗木崔。本研究由中國國家自然科學(xué)基金 (51475366、51475146) 和陜西省自然科學(xué)基礎(chǔ)研究計劃 (批準(zhǔn)號: 2016JM5074) 支持。引用1. 明順、李燕、楊等。漸進(jìn)成形的最新發(fā)展 [J]。航空航天材料工藝, pp 32-38 (2011)2. 趙寧, 毛永杰?,F(xiàn)代機(jī)械制造技術(shù)與發(fā)展趨勢 [J]??萍紕?chuàng)新與應(yīng)用, pp 125 (2013)3. 王孫仲仁, 騰布崗, 唐澤軍。塑性技術(shù)的新發(fā)展 [J]。中國機(jī)械工程, 20 (1), pp 108-112 (2009)4. 崔鳳奎、朱文具盒、王小強(qiáng)、張豐收。高速冷軋技術(shù)的研究現(xiàn)狀與發(fā)展趨勢 [J]。河南學(xué)報理工大學(xué) (自然科學(xué)), 31 (2), pp 191-195 (2012) 5. 李燕、陽明順、李倉等. 鉛螺桿冷軋輥的動力學(xué)仿真與分析 [J]。西安理工大學(xué)學(xué)報, 25 (4), pp 383-387 (2009)6. 崔鳳奎、郭潮、李漁. 40Cr 鋼塑性流動應(yīng)力及本構(gòu)關(guān)系 [J]。
收藏