2019高考數(shù)學(xué)三輪沖刺 大題提分 大題精做4 統(tǒng)計(jì)概率:統(tǒng)計(jì)與統(tǒng)計(jì)案例 文.docx
《2019高考數(shù)學(xué)三輪沖刺 大題提分 大題精做4 統(tǒng)計(jì)概率:統(tǒng)計(jì)與統(tǒng)計(jì)案例 文.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)三輪沖刺 大題提分 大題精做4 統(tǒng)計(jì)概率:統(tǒng)計(jì)與統(tǒng)計(jì)案例 文.docx(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
大題精做4 統(tǒng)計(jì)概率:統(tǒng)計(jì)與統(tǒng)計(jì)案例 [2019開(kāi)封一模]大學(xué)先修課程,是在高中開(kāi)設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來(lái)的職業(yè)生涯做好準(zhǔn)備.某高中成功開(kāi)設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程. (1)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫(xiě)相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗(yàn)?zāi)芊裨诜稿e(cuò)的概率不超過(guò)的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系? 優(yōu)等生 非優(yōu)等生 總計(jì) 學(xué)習(xí)大學(xué)先修課程 250 沒(méi)有學(xué)習(xí)大學(xué)先修課程 總計(jì) 150 (2)某班有5名優(yōu)等生,其中有2名參加了大學(xué)生先修課程的學(xué)習(xí),在這5名優(yōu)等生中任選3人進(jìn)行測(cè)試,求這3人中至少有1名參加了大學(xué)先修課程學(xué)習(xí)的概率. 參考數(shù)據(jù): 參考公式:,其中. 【答案】(1)列聯(lián)表見(jiàn)解析,有關(guān)系;(2). 【解析】(1)列聯(lián)表如下: 優(yōu)等生 非優(yōu)等生 總計(jì) 學(xué)習(xí)大學(xué)先修課程 50 200 250 沒(méi)有學(xué)習(xí)大學(xué)先修課程 100 900 1000 總計(jì) 150 1100 1250 由列聯(lián)表可得, 因此在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系. (2)在這5名優(yōu)等生中,記參加了大學(xué)先修課程的學(xué)習(xí)的2名學(xué)生為,, 記沒(méi)有參加大學(xué)先修課程學(xué)習(xí)的3名學(xué)生為,,. 則所有的抽樣情況如下:,,,,, ,,,,,共10種, 其中沒(méi)有學(xué)生參加大學(xué)先修課程學(xué)習(xí)的情況有1種,為. 記事件為至少有1名學(xué)生參加了大學(xué)先修課程的學(xué)習(xí),則. 1.[2019駐馬店期末]某食品廠為了檢查甲、乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在內(nèi)的產(chǎn)品為合格品,否則為不合格品.注:表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖. 產(chǎn)品重量(克) 頻數(shù) 6 8 14 8 4 (1)根據(jù)上面表1中的數(shù)據(jù)在圖2中作出甲流水線樣本的頻率分布直方圖; (2)若以頻率作為概率,試估計(jì)從兩條流水線上分別任取1件產(chǎn)品,該產(chǎn)品恰好是合格品的概率分別是多少; (3)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答有多大的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動(dòng)包裝流水線的選擇有關(guān). 甲流水線 乙流水線 合計(jì) 合格 不合格 合計(jì) 參考公式:,其中. 2.[2019肇慶統(tǒng)測(cè)]下圖是某市年至年環(huán)境基礎(chǔ)設(shè)施投資額 (單位:億元)的條形圖. (1)若從年到年的五年中,任意選取兩年,則這兩年的投資額的平均數(shù)不少于億元的概率; (2)為了預(yù)測(cè)該市年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)年至年的數(shù)據(jù)(時(shí)間變量的值依次為1,2,,17)建立模型①:;根據(jù)年至年的數(shù)據(jù)(時(shí)間變量的值依次為1,2,,7)建立模型②:. (i)分別利用這兩個(gè)模型,求該地區(qū)年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值; (ii)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由. 3.[2019衡水中學(xué)]為提高玉米產(chǎn)量,某種植基地對(duì)單位面積播種數(shù)與每棵作物的產(chǎn)量之間的關(guān)系進(jìn)行了研究,收集了塊試驗(yàn)田的數(shù)據(jù),得到下表: 試驗(yàn)田編號(hào) 1 2 3 4 5 6 7 8 9 11 (棵/) 4 8 10 (斤/棵) 技術(shù)人員選擇模型作為與的回歸方程類型,令,相關(guān)統(tǒng)計(jì)量的值如下表: 600 44 2721 45642 由表中數(shù)據(jù)得到回歸方程后進(jìn)行殘差分析,殘差圖如圖所示: (1)根據(jù)殘差圖發(fā)現(xiàn)一個(gè)可疑數(shù)據(jù),請(qǐng)寫(xiě)出可疑數(shù)據(jù)的編號(hào)(給出判斷即可,不必說(shuō)明理由); (2)剔除可疑數(shù)據(jù)后,由最小二乘法得到關(guān)于的線性回歸方程中的,求關(guān)于的回歸方程; (3)利用(2)得出的結(jié)果,計(jì)算當(dāng)單位面積播種數(shù)為何值時(shí),單位面積的總產(chǎn)量的預(yù)報(bào)值最大?(計(jì)算結(jié)果精確到) 附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘法估計(jì)分別為,,. 1.【答案】(1)見(jiàn)解析; (2)從甲流水線上任取1件產(chǎn)品,該產(chǎn)品恰好是合格品的概率為, 從乙流水線上任取1件產(chǎn)品,該產(chǎn)品恰好是合格品的概率為; (3)見(jiàn)解析. 【解析】(1)甲流水線樣本的頻率分布直方圖如下: (2)由表1知甲流水線樣本中合格品數(shù)為, 故甲流水線樣本中合格品的頻率為, 由圖1知乙流水線樣本中合格品的頻率為, 據(jù)此可估計(jì)從甲流水線上任取1件產(chǎn)品,該產(chǎn)品恰好是合格品的概率為; 從乙流水線上任取1件產(chǎn)品,該產(chǎn)品恰好是合格品的概率為. (3)由(2)知甲流水線樣本中合格品數(shù)為30,乙流水線樣本中合格品數(shù)為. 列聯(lián)表如下: 甲流水線 乙流水線 合計(jì) 合格 30 36 66 不合格 10 4 14 合計(jì) 40 40 80 ∵, ∴有的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動(dòng)包裝流水線的選擇有關(guān). 2.【答案】(1); (2)(i)利用模型①,預(yù)測(cè)值為億元,利用模型②,預(yù)測(cè)值為億元;(ii)見(jiàn)解析. 【解析】(1)從條形圖中可知,2011年到2015年這五年的投資額分別為122億、129億、148億、171億、184億,設(shè)2011年到2015年這五年的年份分別用,,,,表示, 則從中任意選取兩年的所有基本事件有: ,,,,,,,,,,共10種, 其中滿足兩年的投資額的平均數(shù)不少于140億元的所有基本事件有: ,,,,,,,共7種, ∴從2011年到2015年的五年中,任意選取兩年,則這兩年的投資額的平均數(shù)不少于140億元的概率為. (2)(i)利用模型①,該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為 (億元). 利用模型②,該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為 (億元). (ii)利用模型②得到的預(yù)測(cè)值更可靠. 理由如下:畫(huà)出2001年至2017年環(huán)境基礎(chǔ)設(shè)施投資額 (單位:億元)的散點(diǎn)圖 (i)從散點(diǎn)圖可以看出,2001年至2017年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)沒(méi)有隨機(jī)散布在直線上下. 這說(shuō)明利用2001年至2017年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì). 2011年相對(duì)2010年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加, 2011年至2017年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)位于一條直線的附近, 這說(shuō)明從2011年開(kāi)始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長(zhǎng)趨勢(shì), 利用2011年至2017年的數(shù)據(jù)建立的線性模型可以較好地描述2011年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì),因此利用模型②得到的預(yù)測(cè)值更可靠. (ii)從計(jì)算結(jié)果看,相對(duì)于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元, 由模型①得到的預(yù)測(cè)值億元的增幅明顯偏低,而利用模型②得到的預(yù)測(cè)值的增幅比較合理. 說(shuō)明利用模型②得到的預(yù)測(cè)值更可靠. 3.【答案】(1);(2);(3). 【解析】(1)可疑數(shù)據(jù)為第組. (2)剔除數(shù)據(jù)后,在剩余的組數(shù)據(jù)中, , ∴, ∴關(guān)于的線性回歸方程為,則關(guān)于的回歸方程為. (3)根據(jù)(2)的結(jié)果并結(jié)合條件,單位面積的總產(chǎn)量的預(yù)報(bào)值, , 當(dāng)且僅當(dāng)時(shí),等號(hào)成立,此時(shí), 即當(dāng)時(shí),單位面積的總產(chǎn)量的預(yù)報(bào)值最大,最大值是.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)三輪沖刺 大題提分 大題精做4 統(tǒng)計(jì)概率:統(tǒng)計(jì)與統(tǒng)計(jì)案例 2019 高考 數(shù)學(xué) 三輪 沖刺 大題精做 統(tǒng)計(jì) 概率 案例
鏈接地址:http://m.zhongcaozhi.com.cn/p-3917635.html