浙江省2019年中考數(shù)學(xué)復(fù)習(xí) 微專題六 以特殊四邊形為背景的計(jì)算與證明訓(xùn)練.doc
《浙江省2019年中考數(shù)學(xué)復(fù)習(xí) 微專題六 以特殊四邊形為背景的計(jì)算與證明訓(xùn)練.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江省2019年中考數(shù)學(xué)復(fù)習(xí) 微專題六 以特殊四邊形為背景的計(jì)算與證明訓(xùn)練.doc(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
微專題六 以特殊四邊形為背景的計(jì)算與證明 姓名:________ 班級(jí):________ 用時(shí):______分鐘 1.如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點(diǎn),且OA=OB=OD.求證: (1)∠BOD=∠C; (2)四邊形OBCD是菱形. 2.如圖,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于F,且AF=CD,連結(jié)CF. (1)求證:△AEF≌△DEB; (2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論. 3.如圖,正方形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在AB,BC上(AE<BE),且∠EOF=90,OE,DA的延長(zhǎng)線交于點(diǎn)M,OF,AB的延長(zhǎng)線交于點(diǎn)N,連結(jié)MN. (1)求證:OM=ON; (2)若正方形ABCD的邊長(zhǎng)為4,E為OM的中點(diǎn),求MN的長(zhǎng). 4.如圖,點(diǎn)E,F(xiàn)分別是矩形ABCD的邊AD,AB上一點(diǎn),若AE=DC=2ED,且EF⊥EC. (1)求證:點(diǎn)F為AB的中點(diǎn); (2)延長(zhǎng)EF與CB的延長(zhǎng)線相交于點(diǎn)H,連結(jié)AH,已知ED=2,求AH的值. 5.問(wèn)題情境: 在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開(kāi)展數(shù)學(xué)活動(dòng).如圖1,將矩形紙片ABCD沿對(duì)角線AC剪開(kāi),得到△ABC和△ACD.并且量得AB=2 cm,AC=4 cm. 操作發(fā)現(xiàn): (1)將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)∠α,使∠α=∠BAC,得到如圖2所示的△AC′D,過(guò)點(diǎn)C作AC′的平行線,與DC′的延長(zhǎng)線交于點(diǎn)E,則四邊形ACEC′的形狀是________; (2)創(chuàng)新小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使B,A,D三點(diǎn)在同一條直線上,得到如圖3所示的△AC′D,連結(jié)CC′,取CC′的中點(diǎn)F,連結(jié)AF并延長(zhǎng)至點(diǎn)G,使FG=AF,連結(jié)CG,C′G,得到四邊形ACGC′,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論; 實(shí)踐探究: (3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著B(niǎo)D方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至A′點(diǎn),A′C與BC′相交于點(diǎn)H,如圖4所示,連結(jié)CC′,試求tan∠C′CH的值. 參考答案 1.證明:(1)如圖,延長(zhǎng)AO到E. ∵OA=OB,∴∠ABO=∠BAO. 又∠BOE=∠ABO+∠BAO, ∴∠BOE=2∠BAO. 同理∠DOE=2∠DAO, ∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO), 即∠BOD=2∠BAD. 又∠C=2∠BAD,∴∠BOD=∠C. (2)如圖,連結(jié)OC. ∵OB=OD,CB=CD,OC=OC, ∴△OBC≌△ODC, ∴∠BOC=∠DOC,∠BCO=∠DCO. ∵∠BOD=∠BOC+∠DOC, ∠BCD=∠BCO+∠DCO, ∴∠BOC=∠BOD,∠BCO=∠BCD. 又∠BOD=∠BCD, ∴∠BOC=∠BCO,∴BO=BC. 又OB=OD,BC=CD, ∴OB=BC=CD=DO, ∴四邊形OBCD是菱形. 2.證明:(1)∵E是AD的中點(diǎn),∴AE=DE. ∵AF∥BC, ∴∠AFE=∠DBE,∠EAF=∠EDB, ∴△AEF≌△DEB(AAS). (2)如圖,連結(jié)DF. ∵AF∥CD,AF=CD, ∴四邊形ADCF是平行四邊形. ∵△AEF≌△DEB,∴BE=FE. ∵AE=DE, ∴四邊形ABDF是平行四邊形, ∴DF=AB. ∵AB=AC,∴DF=AC, ∴四邊形ADCF是矩形. 3.(1)證明:∵四邊形ABCD是正方形, ∴OA=OB,∠DAO=45,∠OBA=45, ∴∠OAM=∠OBN=135. ∵∠EOF=90,∠AOB=90, ∴∠AOM=∠BON, ∴△OAM≌△OBN(ASA),∴OM=ON. (2)解:如圖,過(guò)點(diǎn)O作OH⊥AD于點(diǎn)H. ∵正方形的邊長(zhǎng)為4,∴OH=HA=2. ∵E為OM的中點(diǎn),∴HM=4, 則OM==2, ∴MN=OM=2. 4.(1)證明:∵EF⊥EC, ∴∠CEF=90,∴∠AEF+∠DEC=90. ∵四邊形ABCD是矩形, ∴∠AEF+∠AFE=90, ∠DEC+∠DCE=90, ∴∠AEF=∠DCE,∠AFE=∠DEC. ∵AE=DC,∴△AEF≌△DCE. ∴ED=AF. ∵AE=DC=AB=2DE, ∴AB=2AF,∴F是AB的中點(diǎn). (2)解:由(1)得AF=FB,且AE∥BH, ∴∠FBH=∠FAE=90,∠AEF=∠FHB, ∴△AEF≌△BHF,∴HB=AE. ∵ED=2,且AE=2ED,∴AE=4, ∴HB=AB=AE=4, ∴AH2=AB2+BH2=16+16=32, ∴AH=4. 5.解:(1)菱形 (2)在圖1中,∵四邊形ABCD是矩形, ∴AB∥CD, ∴∠CAD=∠ACB,∠B=90, ∴∠BAC+∠ACB=90. 在圖3中,由旋轉(zhuǎn)知,∠DAC′=∠DAC, ∴∠ACB=∠DAC′, ∴∠BAC+∠DAC′=90. ∵點(diǎn)D,A,B在同一條直線上, ∴∠CAC′=90. 由旋轉(zhuǎn)知,AC=AC′. ∵點(diǎn)F是CC′的中點(diǎn),∴AG⊥CC′,CF=C′F. ∵AF=FG, ∴四邊形ACGC′是平行四邊形. ∵AG⊥CC′,∴四邊形ACGC′是菱形. ∵∠CAC′=90, ∴菱形ACGC′是正方形. (3)在Rt△ABC中,AB=2,AC=4, ∴BC′=AC=4,BD=BC=2, sin ∠ACB==, ∴∠ACB=30. 由(2)結(jié)合平移知,∠CHC′=90. 在Rt△BCH中,∠ACB=30, ∴BH=BCsin 30=, ∴C′H=BC′-BH=4-. 在Rt△ABH中,AH=AB=1, ∴CH=AC-AH=4-1=3, 在Rt△CHC′中, tan ∠C′CH==.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 浙江省2019年中考數(shù)學(xué)復(fù)習(xí) 微專題六 以特殊四邊形為背景的計(jì)算與證明訓(xùn)練 浙江省 2019 年中 數(shù)學(xué) 復(fù)習(xí) 專題 特殊 四邊形 背景 計(jì)算 證明 訓(xùn)練
鏈接地址:http://m.zhongcaozhi.com.cn/p-5536587.html