2019年高考數(shù)學(xué)總復(fù)習(xí) 9.1 坐標(biāo)系與參數(shù)方程課件 理.ppt
《2019年高考數(shù)學(xué)總復(fù)習(xí) 9.1 坐標(biāo)系與參數(shù)方程課件 理.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)總復(fù)習(xí) 9.1 坐標(biāo)系與參數(shù)方程課件 理.ppt(28頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專(zhuān)題九選做大題 9 1坐標(biāo)系與參數(shù)方程 選修4 4 1 極坐標(biāo)系與極坐標(biāo) 1 極坐標(biāo)系 如圖所示 在平面內(nèi)取一個(gè)定點(diǎn)O 叫做極點(diǎn) 自極點(diǎn)O引一條射線Ox 叫做極軸 再選定一個(gè)長(zhǎng)度單位 一個(gè)角度單位 通常取弧度 及其正方向 通常取逆時(shí)針?lè)较?這樣就建立了一個(gè)極坐標(biāo)系 2 極坐標(biāo) 設(shè)M是平面內(nèi)一點(diǎn) 極點(diǎn)O與點(diǎn)M的距離 OM 叫做點(diǎn)M的極徑 記為 以極軸Ox為始邊 射線OM為終邊的角xOM叫做點(diǎn)M的極角 記為 有序數(shù)對(duì) 叫做點(diǎn)M的極坐標(biāo) 記為M 一般地 不作特殊說(shuō)明時(shí) 我們認(rèn)為 0 可取任意實(shí)數(shù) 2 極坐標(biāo)與直角坐標(biāo)的互化把直角坐標(biāo)系的原點(diǎn)作為極點(diǎn) x軸的非負(fù)半軸作為極軸 并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位 設(shè)M是平面內(nèi)任意一點(diǎn) 它的直角坐標(biāo)是 x y 極坐標(biāo)為 則它們之間的關(guān)系為x cos y sin 另一種關(guān)系為 2 x2 y2 tan x 0 3 直線的極坐標(biāo)方程若直線過(guò)點(diǎn)M 0 0 且此直線與極軸所成的角為 則它的方程為 sin 0sin 0 幾個(gè)特殊位置的直線的極坐標(biāo)方程 1 直線過(guò)極點(diǎn) 0和 0 2 直線過(guò)點(diǎn)M a 0 且垂直于極軸 cos a 4 圓的極坐標(biāo)方程若圓心為M 0 0 半徑為r 則圓的方程為 2 2 0 cos 0 r2 0 幾個(gè)特殊位置的圓的極坐標(biāo)方程 1 圓心位于極點(diǎn) 半徑為r r 2 圓心位于M a 0 半徑為a 2acos 5 曲線的參數(shù)方程 6 一些常見(jiàn)曲線的參數(shù)方程 考向一 考向二 考向三 考向四 參數(shù)方程與極坐標(biāo)方程間的互化例1在直角坐標(biāo)系xOy中 曲線C1的參數(shù)方程為 軸的極坐標(biāo)系中 曲線C2 4cos 1 說(shuō)明C1是哪一種曲線 并將C1的方程化為極坐標(biāo)方程 2 直線C3的極坐標(biāo)方程為 0 其中 0滿足tan 0 2 若曲線C1與C2的公共點(diǎn)都在C3上 求a 解 1 消去參數(shù)t得到C1的普通方程x2 y 1 2 a2 C1是以 0 1 為圓心 a為半徑的圓 將x cos y sin 代入C1的普通方程中 得到C1的極坐標(biāo)方程為 2 2 sin 1 a2 0 考向一 考向二 考向三 考向四 從而1 a2 0 解得a 1 舍去 a 1 a 1時(shí) 極點(diǎn)也為C1 C2的公共點(diǎn) 在C3上 所以a 1 解題心得1 無(wú)論是參數(shù)方程化為極坐標(biāo)方程 還是極坐標(biāo)方程化為參數(shù)方程 都要先化為直角坐標(biāo)方程 再由直角坐標(biāo)方程化為需要的方程 2 求解與極坐標(biāo)方程有關(guān)的問(wèn)題時(shí) 可以轉(zhuǎn)化為熟悉的直角坐標(biāo)方程求解 若最終結(jié)果要求用極坐標(biāo)表示 則需將直角坐標(biāo)轉(zhuǎn)化為極坐標(biāo) 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練1在直角坐標(biāo)系xOy中 以坐標(biāo)原點(diǎn)為極點(diǎn) x軸正半軸為 1 求C的參數(shù)方程 2 設(shè)點(diǎn)D在C上 C在D處的切線與直線l y x 2垂直 根據(jù) 1 中你得到的參數(shù)方程 確定D的坐標(biāo) 解 1 C的普通方程為 x 1 2 y2 1 0 y 1 考向一 考向二 考向三 考向四 求兩點(diǎn)間距離的最值 1 求C2與C3交點(diǎn)的直角坐標(biāo) 2 若C1與C2相交于點(diǎn)A C1與C3相交于點(diǎn)B 求 AB 的最大值 考向一 考向二 考向三 考向四 解 1 曲線C2的直角坐標(biāo)方程為x2 y2 2y 0 曲線C3的直角坐標(biāo)方程為x2 y2 2x 0 2 曲線C1的極坐標(biāo)方程為 R 0 其中0 考向一 考向二 考向三 考向四 解題心得1 將參數(shù)方程化為普通方程的過(guò)程就是消去參數(shù)的過(guò)程 常用的消參方法有代入消參 加減消參和三角恒等式消參等 往往需要對(duì)參數(shù)方程進(jìn)行變形 為消去參數(shù)創(chuàng)造條件 2 若極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合 極軸與x軸正半軸重合 兩坐標(biāo)系的長(zhǎng)度單位相同 則極坐標(biāo)方程與直角坐標(biāo)方程可以互化 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練2在直角坐標(biāo)系xOy中 曲線C1的參數(shù)方程為 1 寫(xiě)出C1的普通方程和C2的直角坐標(biāo)方程 2 設(shè)點(diǎn)P在C1上 點(diǎn)Q在C2上 求 PQ 的最小值及此時(shí)P的直角坐標(biāo) 考向一 考向二 考向三 考向四 因?yàn)镃2是直線 所以 PQ 的最小值即為P到C2的距離d 的最小值 考向一 考向二 考向三 考向四 求三角形面積的最值例3在直角坐標(biāo)系xOy中 以坐標(biāo)原點(diǎn)為極點(diǎn) x軸正半軸為極軸建立極坐標(biāo)系 曲線C1的極坐標(biāo)方程為 cos 4 1 M為曲線C1上的動(dòng)點(diǎn) 點(diǎn)P在線段OM上 且滿足 OM OP 16 求點(diǎn)P的軌跡C2的直角坐標(biāo)方程 解 1 設(shè)P的極坐標(biāo)為 0 M的極坐標(biāo)為 1 1 0 由 OM OP 16得C2的極坐標(biāo)方程 4cos 0 因此C2的直角坐標(biāo)方程為 x 2 2 y2 4 x 0 考向一 考向二 考向三 考向四 2 設(shè)點(diǎn)B的極坐標(biāo)為 B B 0 由題設(shè)知 OA 2 B 4cos 于是 OAB面積 考向一 考向二 考向三 考向四 解題心得對(duì)于極坐標(biāo)和參數(shù)方程的問(wèn)題 既可以通過(guò)極坐標(biāo)和參數(shù)方程來(lái)解決 也可以通過(guò)直角坐標(biāo)解決 但大多數(shù)情況下 把極坐標(biāo)問(wèn)題轉(zhuǎn)化為直角坐標(biāo)問(wèn)題 把參數(shù)方程轉(zhuǎn)化為普通方程更有利于在一個(gè)熟悉的環(huán)境下解決問(wèn)題 這樣可以減少由于對(duì)極坐標(biāo)和參數(shù)方程理解不到位造成的錯(cuò)誤 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練3在直角坐標(biāo)系xOy中 直線C1 x 2 圓C2 x 1 2 y 2 2 1 以坐標(biāo)原點(diǎn)為極點(diǎn) x軸的正半軸為極軸建立極坐標(biāo)系 1 求C1 C2的極坐標(biāo)方程 2 若直線C3的極坐標(biāo)方程為 R 設(shè)C2與C3的交點(diǎn)為M N 求 C2MN的面積 解 1 因?yàn)閤 cos y sin 所以C1的極坐標(biāo)方程為 cos 2 C2的極坐標(biāo)方程為 2 2 cos 4 sin 4 0 考向一 考向二 考向三 考向四 求動(dòng)點(diǎn)軌跡的方程 數(shù)分別為t 與t 2 0 2 M為PQ的中點(diǎn) 1 求M的軌跡的參數(shù)方程 2 將M到坐標(biāo)原點(diǎn)的距離d表示為 的函數(shù) 并判斷M的軌跡是否過(guò)坐標(biāo)原點(diǎn) 解 1 依題意有P 2cos 2sin Q 2cos2 2sin2 因此M cos cos2 sin sin2 M的軌跡的參數(shù)方程為 考向一 考向二 考向三 考向四 2 M點(diǎn)到坐標(biāo)原點(diǎn)的距離 當(dāng) 時(shí) d 0 故M的軌跡過(guò)坐標(biāo)原點(diǎn) 解題心得在求動(dòng)點(diǎn)軌跡方程時(shí) 如果題目有明確要求 求軌跡的參數(shù)方程或求軌跡的極坐標(biāo)方程或求軌跡的直角坐標(biāo)方程 那么就按要求做 如果沒(méi)有明確的要求 那么三種形式的方程寫(xiě)出哪種都可 哪種形式的容易求就寫(xiě)哪種 考向一 考向二 考向三 考向四 對(duì)點(diǎn)訓(xùn)練4 2018全國(guó) 理22 在平面直角坐標(biāo)系xOy中 O的參 與 O交于A B兩點(diǎn) 1 求 的取值范圍 2 求AB中點(diǎn)P的軌跡的參數(shù)方程 解 1 O的直角坐標(biāo)方程為x2 y2 1 考向一 考向二 考向三 考向四- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)總復(fù)習(xí) 9.1 坐標(biāo)系與參數(shù)方程課件 2019 年高 數(shù)學(xué) 復(fù)習(xí) 坐標(biāo)系 參數(shù) 方程 課件
鏈接地址:http://m.zhongcaozhi.com.cn/p-5701985.html