《(通用版)2019版高考數(shù)學二輪復習 第一部分 第二層級 重點增分 專題一 函數(shù)的圖象與性質講義 理(普通生含解析).doc》由會員分享,可在線閱讀,更多相關《(通用版)2019版高考數(shù)學二輪復習 第一部分 第二層級 重點增分 專題一 函數(shù)的圖象與性質講義 理(普通生含解析).doc(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
重點增分專題一 函數(shù)的圖象與性質
[全國卷3年考情分析]
年份
全國卷Ⅰ
全國卷Ⅱ
全國卷Ⅲ
2018
函數(shù)圖象的識辨T3
函數(shù)圖象的識辨T7
抽象函數(shù)的奇偶性及周期性T11
2017
利用函數(shù)的單調性、奇偶性解不等式T5
分段函數(shù)、解不等式T15
2016
函數(shù)圖象的識辨T7
(1)高考對此部分內容的命題多集中于函數(shù)的概念、函數(shù)的性質及分段函數(shù)等方面,多以選擇、填空題形式考查,一般出現(xiàn)在第5~10或第13~15題的位置上,難度一般.主要考查函數(shù)的定義域、分段函數(shù)、函數(shù)圖象的判斷及函數(shù)的奇偶性、周期性等.
(2)此部分內容有時也出現(xiàn)在選擇、填空中的壓軸題的位置,多與導數(shù)、不等式、創(chuàng)新性問題結合命題,難度較大.
保分考點練后講評
[大穩(wěn)定]
1.函數(shù)y=log2(2x-4)+的定義域是( )
A.(2,3) B.(2,+∞)
C.(3,+∞) D.(2,3)∪(3,+∞)
解析:選D 由題意得解得x>2且x≠3,所以函數(shù)y=log2(2x-4)+的定義域為(2,3)∪(3,+∞),故選D.
2.已知f(x)=(0<a<1),且f(-2)=5,f(-1)=3,則f(f(-3))=( )
A.-2 B.2
C.3 D.-3
解析:選B 由題意得,f(-2)=a-2+b=5,①
f(-1)=a-1+b=3,②
聯(lián)立①②,結合0<a<1,得a=,b=1,
所以f(x)=
則f(-3)=-3+1=9,f(f(-3))=f(9)=log39=2,故選B.
3.(2018全國卷Ⅰ)設函數(shù)f(x)=則滿足f(x+1)
0時,f(x+1)=1,f(2x)=1,不合題意.
綜上,不等式f(x+1)0,排除D選項.
又e>2,∴<,∴e->1,排除C選項.故選B.
(2)對于選項A,當x=2時,2ln 2=ln 4>ln e=1,由圖象可知選項A不符合題意;對于選項B,當x=e時,eln e-e+1=1,由圖象可知選項B不符合題意;對于選項C,當x=e時,ln e+-1=<1,由圖象可知選項C不符合題意,故選D.
[答案] (1)B (2)D
[解題方略]
尋找函數(shù)圖象與解析式之間的對應關系的方法
知式選圖
①從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置
②從函數(shù)的單調性,判斷圖象的變化趨勢
③從函數(shù)的奇偶性,判斷圖象的對稱性
④從函數(shù)的周期性,判斷圖象的循環(huán)往復
知圖選式
①從圖象的左右、上下分布,觀察函數(shù)的定義域、值域
②從圖象的變化趨勢,觀察函數(shù)的單調性
③從圖象的對稱性方面,觀察函數(shù)的奇偶性
④從圖象的循環(huán)往復,觀察函數(shù)的周期性
題型二 函數(shù)圖象的應用
[例2] (1)(2018棗莊檢測)已知函數(shù)f(x)=x|x|-2x,則下列結論正確的是( )
A.f(x)是偶函數(shù),遞增區(qū)間是(0,+∞)
B.f(x)是偶函數(shù),遞減區(qū)間是(-∞,1)
C.f(x)是奇函數(shù),遞減區(qū)間是(-1,1)
D.f(x)是奇函數(shù),遞增區(qū)間是(-∞,0)
(2)函數(shù)f(x)=-x2+3x+a,g(x)=2x-x2,若f(g(x))≥0對x∈[0,1]恒成立,則實數(shù)a的取值范圍是( )
A.[-e,+∞) B.[-ln 2,+∞)
C.[-2,+∞) D.
[解析] (1)將函數(shù)f(x)=x|x|-2x去掉絕對值,
得f(x)=
作出函數(shù)f(x)的圖象,
如圖,觀察圖象可知,
函數(shù)f(x)為奇函數(shù),且在(-1,1)上單調遞減.
(2)如圖所示,在同一坐標系中作出y=x2+1,y=2x,y=x2+的圖象,
由圖象可知,在[0,1]上,
x2+1≤2x<x2+恒成立,
即1≤2x-x2<,
當且僅當x=0或x=1時等號成立,
∴1≤g(x)<,
∴f(g(x))≥0?f(1)≥0?-1+3+a≥0?a≥-2,
則實數(shù)a的取值范圍是[-2,+∞).
[答案] (1)C (2)C
[解題方略]
1.利用函數(shù)的圖象研究不等式
當不等式問題不能用代數(shù)法求解,但其與函數(shù)有關時,常將不等式問題轉化為兩函數(shù)圖象的上下關系問題,從而利用數(shù)形結合求解.
2.利用函數(shù)的圖象研究函數(shù)的性質
對于已知或解析式易畫出其在給定區(qū)間上圖象的函數(shù),其性質常借助圖象研究:①從圖象的最高點、最低點,分析函數(shù)的最值、極值;②從圖象的對稱性,分析函數(shù)的奇偶性;③從圖象的走向趨勢,分析函數(shù)的單調性、周期性.
增分考點深度精研
[析母題]
[典例] 定義在R上的奇函數(shù)f(x),滿足在(0,+∞)上單調遞增,且f(-1)=0,則f(x+1)>0的解集為( )
A.(-∞,-2)∪(-1,0)
B.(0,+∞)
C.(-2,-1)∪(1,2)
D.(-2,-1)∪(0,+∞)
[解析] 由f(x)為奇函數(shù),在(0,+∞)上單調遞增,且f(-1)=0,可得f(1)=0,作出函數(shù)f(x)的示意圖如圖所示,由f(x+1)>0,可得-1<x+1<0或x+1>1,解得-2<x<-1或x>0,所以f(x+1)>0的解集為(-2,-1)∪(0,+∞).
[答案] D
[練子題]
1.本例中條件變?yōu)椋喝鬴(x)為偶函數(shù),滿足在[0,+∞)上單調遞減,且f(-1)=0,則f(x+1)>0的解集為________.
解析:由f(x)為偶函數(shù),在[0,+∞)上單調遞減,
且f(-1)=0,得f(1)=0.
由f(x+1)>0,得|x+1|<1.
解得-20 B.減函數(shù)且f(x)<0
C.增函數(shù)且f(x)>0 D.增函數(shù)且f(x)<0
[解析] 當x∈時,由f(x)=log (1-x)可知f(x)單調遞增且f(x)>0,又函數(shù)f(x)為奇函數(shù),所以在區(qū)間上函數(shù)f(x)也單調遞增,且f(x)<0.由f=f(x)知,函數(shù)f(x)的周期為,所以在區(qū)間上,函數(shù)f(x)單調遞增且f(x)<0.故選D.
[答案] D
[素養(yǎng)通路]
數(shù)學抽象是指通過對數(shù)量關系與空間形式的抽象,得到數(shù)學研究對象的素養(yǎng).主要包括:從數(shù)量與數(shù)量關系,圖形與圖形關系中抽象出數(shù)學概念與概念之間的關系,從事物的具體背景中抽象出一般規(guī)律與結構,并用數(shù)學語言予以表征.
本題由函數(shù)的奇偶性得到其對稱區(qū)間的單調性,由f=f(x)得知f(x)的周期,進而得出f(x)在區(qū)間上的性質.考查了數(shù)學抽象這一核心素養(yǎng).
A組——“12+4”滿分練
一、選擇題
1.已知函數(shù)f(x)=則f(f(-2))=( )
A.4 B.3
C.2 D.1
解析:選A 因為f(x)=所以f(-2)=-(-2)=2,所以f(f(-2))=f(2)=22=4.
2.(2018濰坊統(tǒng)一考試)下列函數(shù)中,圖象是軸對稱圖形且在區(qū)間(0,+∞)上單調遞減的是( )
A.y= B.y=-x2+1
C.y=2x D.y=log2|x|
解析:選B 因為函數(shù)的圖象是軸對稱圖形,所以排除A、C,又y=-x2+1在(0, +∞)上單調遞減,y=log2|x|在(0,+∞)上單調遞增,所以排除D.故選B.
3.已知函數(shù)f(x)=4|x|,g(x)=2x2-ax(a∈R).若f(g(1))=2,則a=( )
A.1或 B.或
C.2或 D.1或
解析:選B 由已知條件可知f(g(1))=f(2-a)=4|2-a|=2,所以|a-2|=,得a=或.
4.已知函數(shù)f(x)=x2-2ax+5的定義域和值域都是[1,a],則a=( )
A.1 B.2
C.3 D.4
解析:選B 因為f(x)=(x-a)2+5-a2,所以f(x)在[1,a]上是減函數(shù),又f(x)的定義域和值域均為[1,a],所以即解得a=2.
5.(2018全國卷Ⅲ)函數(shù)y=-x4+x2+2的圖象大致為( )
解析:選D 法一:令f(x)=-x4+x2+2,
則f′(x)=-4x3+2x,
令f′(x)=0,得x=0或x=,
則f′(x)>0的解集為∪,
f(x)單調遞增;f′(x)<0的解集為∪,f(x)單調遞減,結合圖象知選D.
法二:當x=1時,y=2,所以排除A、B選項.當x=0時,y=2,而當x=時,y=-++2=2>2,所以排除C選項.故選D.
6.若函數(shù)f(x)=的圖象如圖所示,則f(-3)等于( )
A.- B.-
C.-1 D.-2
解析:選C 由圖象可得a(-1)+b=3,ln(-1+a)=0,∴a=2,b=5,
∴f(x)=
故f(-3)=2(-3)+5=-1.
7.設函數(shù)f(x)=x3(ax+ma-x)(x∈R,a>0且a≠1)是偶函數(shù),則實數(shù)m的值為( )
A.-1 B.1
C.2 D.-2
解析:選A 法一:因為函數(shù)f(x)=x3(ax+ma-x)(x∈R,a>0且a≠1)是偶函數(shù),所以f(-x)=f(x)對任意的x∈R恒成立,所以-x3(a-x+max)=x3(ax+ma-x),即x3(1+m)(ax+ a-x)=0對任意的x∈R恒成立,所以1+m=0,即m=-1.
法二:因為f(x)=x3(ax+ma-x)是偶函數(shù),所以g(x)=ax+ma-x是奇函數(shù),且g(x)在x=0處有意義,所以g(0)=0,即1+m=0,所以m=-1.
8.(2018福建第一學期高三期末考試)已知函數(shù)f(x)=若f(a)=3,則f(a-2)=( )
A.- B.3
C.-或3 D.-或3
解析:選A 當a>0時,若f(a)=3,則log2a+a=3,解得a=2(滿足a>0);當a≤0時,若f(a)=3,則4a-2-1=3,解得a=3,不滿足a≤0,所以舍去.于是,可得a=2.故f(a-2)=f(0)=4-2-1=-.
9.函數(shù)f(x)=的圖象大致為( )
解析:選A 由題意知,函數(shù)f(x)為奇函數(shù),且函數(shù)的定義域為(-∞,0)∪(0,+∞),故排除C、D,又f=<0,故排除選項B.
10.已知函數(shù)f(x)在(-1,1)上既是奇函數(shù),又是減函數(shù),則滿足f(1-x)+f(3x-2)<0的x的取值范圍是( )
A. B.
C. D.
解析:選B 由已知得f(3x-2)<f(x-1),
∴解得<x<1,故選B.
11.已知函數(shù)f(x)=對于任意的x1≠x2,都有(x1-x2)[f(x2)-f(x1)]>0成立,則實數(shù)a的取值范圍是( )
A.(-∞,3] B.(-∞,3)
C.(3,+∞) D.[1,3)
解析:選D 由(x1-x2)[f(x2)-f(x1)]>0,得函數(shù)f(x)為R上的單調遞減函數(shù),則解得1≤a<3.故選D.
12.(2018洛陽一模)已知a>0,設函數(shù)f(x)=(x∈[-a,a])的最大值為M,最小值為N,那么M+N=( )
A.2 017 B.2 019
C.4 038 D.4 036
解析:選D 由題意得f(x)==2 019-.
因為y=2 019x+1在[-a,a]上是單調遞增的,
所以f(x)=2 019-在[-a,a]上是單調遞增的,所以M=f(a),N=f(-a),
所以M+N=f(a)+f(-a)=4 038--=4 036.
二、填空題
13.函數(shù)y=的定義域是________.
解析:由得-1<x<5,
∴函數(shù)y=的定義域是(-1,5).
答案:(-1,5)
14.函數(shù)f(x)=ln的值域是________.
解析:因為|x|≥0,所以|x|+1≥1.
所以0<≤1.所以ln≤0,
即f(x)=ln的值域為(-∞,0].
答案:(-∞,0]
15.(2018福州質檢)已知函數(shù)f(x)對任意的x∈R都滿足f(x)+f(-x)=0,f為偶函數(shù),當0<x≤時,f(x)=-x,則f(2 017)+f(2 018)=________.
解析:依題意,f(-x)=-f(x),
f=f,
所以f(x+3)=f(-x)=-f(x),
所以f(x+6)=f(x),
所以f(2 017)=f(1)=-1,
f(2 018)=f(2)=f=f=f(1)=-1,所以f(2 017)+f(2 018)=-2.
答案:-2
16.若當x∈(1,2)時,函數(shù)y=(x-1)2的圖象始終在函數(shù)y=logax(a>0,且a≠1)的圖象的下方,則實數(shù)a的取值范圍是________.
解析:如圖,在同一平面直角坐標系中畫出函數(shù)y=(x-1)2和y=logax的圖象,由于當x∈(1,2)時,函數(shù)y=(x-1)2的圖象恒在函數(shù)y=logax的圖象的下方,則解得1x+1對任意的x∈[-1,2]恒成立,等價于a>-x2+3x+1對任意的x∈[-1,2]恒成立.設g(x)=-x2+3x+1(-1≤x≤2),則g(x)=-2+ (-1≤x≤2),當x=時,g(x)取得最大值,且g(x)max=g=,因此a>,故選D.
7.(2018南昌模擬)設函數(shù)f(x)=若f(1)是f(x)的最小值,則實數(shù)a的取值范圍為( )
A.[-1,2) B.[-1,0]
C.[1,2] D.[1,+∞)
解析:選C 法一:∵f(1)是f(x)的最小值,
∴y=2|x-a|在(-∞,1]上單調遞減,∴
即∴
∴1≤a≤2,故選C.
法二:當a=0時,函數(shù)f(x)的最小值是f(0),不符合題意,排除選項A、B;
當a=3時,函數(shù)f(x)無最小值,排除選項D,故選C.
8.(2018福州質檢)設函數(shù)f(x)=則滿足不等式f(x2-2)>f(x)的x的取值范圍是( )
A.(-∞,-1)∪(2,+∞)
B.(-∞,-)∪(,+∞)
C.(-∞,-)∪(2,+∞)
D.(-∞,-1)∪(,+∞)
解析:選C 法一:因為當x>0時,函數(shù)f(x)單調遞增;當x≤0時,f(x)=0,故由f(x2-2)>f(x),得或解得x>2或x<-,所以x的取值范圍是(-∞,-)∪(2,+∞),故選C.
法二:取x=2,則f(22-2)=f(2),所以x=2不滿足題意,排除B、D;取x=-1.1,則f[(-1.1)2-2]=f(-0.79)=0,f(-1.1)=0,所以x=-1.1不滿足題意,排除A,故選C.
9.如圖,把圓周長為1的圓的圓心C放在y軸上,頂點A(0,1),一動點M從點A開始逆時針繞圓運動一周,記=x,直線AM與x軸交于點N(t,0),則函數(shù)t=f(x)的圖象大致為( )
解析:選D 當x由0→時,t從-∞→0,且單調遞增,當x由→1時,t從0→+∞,且單調遞增,所以排除A、B、C,故選D.
10.函數(shù)f(x)=的圖象如圖所示,則下列結論成立的是( )
A.a(chǎn)>0,b>0,c<0 B.a(chǎn)<0,b>0,c>0
C.a(chǎn)<0,b>0,c<0 D.a(chǎn)<0,b<0,c<0
解析:選C ∵f(x)=的圖象與x軸,y軸分別交于N,M,且點M的縱坐標與點N的橫坐標均為正,∴x=->0,y=>0,故a<0,b>0,又函數(shù)圖象間斷點的橫坐標為正,∴-c>0,c<0,故選C.
11.已知f(x)=2x-1,g(x)=1-x2,規(guī)定:當|f(x)|≥g(x)時,h(x)=|f(x)|;當|f(x)|<g(x)時,h(x)=-g(x),則h(x)( )
A.有最小值-1,最大值1
B.有最大值1,無最小值
C.有最小值-1,無最大值
D.有最大值-1,無最小值
解析:選C 作出函數(shù)g(x)=1-x2和函數(shù)|f(x)|=|2x-1|的圖象如圖①所示,得到函數(shù)h(x)的圖象如圖②所示,由圖象得函數(shù)h(x)有最小值-1,無最大值.
12.在實數(shù)集R上定義一種運算“★”,對于任意給定的a,b∈R,a★b為唯一確定的實數(shù),且具有下列三條性質:
(1)a★b=b★a;(2)a★0=a;(3)(a★b)★c=c★(ab)+(a★c)+(c★b)-2c.
關于函數(shù)f(x)=x★,有如下說法:
①函數(shù)f(x)在(0,+∞)上的最小值為3;
②函數(shù)f(x)為偶函數(shù);
③函數(shù)f(x)為奇函數(shù);
④函數(shù)f(x)的單調遞增區(qū)間為(-∞,-1),(1,+∞);
⑤函數(shù)f(x)不是周期函數(shù).
其中正確說法的個數(shù)為( )
A.1 B.2
C.3 D.4
解析:選C 對于新運算“★”的性質(3),令c=0,則(a★b)★0=0★(ab)+(a★0)+(0★b)=ab+a+b,即a★b=ab+a+b.∴f(x)=x★=1+x+,當x>0時,f(x)=1+x+≥1+2 =3,當且僅當x=,即x=1時取等號,∴函數(shù)f(x)在(0,+∞)上的最小值為3,故①正確;函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),∵f(1)=1+1+1=3,f(-1)=1-1-1=-1,∴f(-1)≠-f(1)且f(-1)≠f(1),∴函數(shù)f(x)為非奇非偶函數(shù),故②③錯誤;根據(jù)函數(shù)的單調性,知函數(shù)f(x)=1+x+的單調遞增區(qū)間為(-∞,-1),(1,+∞),故④正確;由④知,函數(shù)f(x)=1+x+不是周期函數(shù),故⑤正確.
綜上所述,所有正確說法的個數(shù)為3,故選C.
二、填空題
13.(2018惠州調研)已知函數(shù)f(x)=x+-1,f(a)=2,則f(-a)=________.
解析:由已知得f(a)=a+-1=2,即a+=3,所以f(-a)=-a--1=--1=-3-1=-4.
答案:-4
14.已知函數(shù)f(x)的圖象關于點(-3,2)對稱,則函數(shù)h(x)=f(x+1)-3的圖象的對稱中心為________.
解析:函數(shù)h(x)=f(x+1)-3的圖象是由函數(shù)f(x)的圖象向左平移1個單位,再向下平移3個單位得到的,又f(x)的圖象關于點(-3,2)對稱,所以函數(shù)h(x)的圖象的對稱中心為(-4,-1).
答案:(-4,-1)
15.已知定義在R上的偶函數(shù)f(x)滿足當x≥0時,f(x)=loga(x+1)(a>0,且a≠1),則當-11時,原不等式等價于解得a>2;
②當0
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
-
通用版2019版高考數(shù)學二輪復習
第一部分
第二層級
重點增分
專題一
函數(shù)的圖象與性質講義
理普通生,含解析
通用版
2019
高考
數(shù)學
二輪
復習
第一
部分
第二
層級
重點
專題
函數(shù)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.zhongcaozhi.com.cn/p-6118845.html