2019-2020年人教A版高中數(shù)學 高三一輪(文) 第三章 3-1角的概念及任意角的三角函數(shù)《教案》.doc
《2019-2020年人教A版高中數(shù)學 高三一輪(文) 第三章 3-1角的概念及任意角的三角函數(shù)《教案》.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年人教A版高中數(shù)學 高三一輪(文) 第三章 3-1角的概念及任意角的三角函數(shù)《教案》.doc(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年人教A版高中數(shù)學 高三一輪(文) 第三章 3-1角的概念及任意角的三角函數(shù)《教案》 1.角的概念 (1)任意角:①定義:一個角可以看做平面內(nèi)一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形;②分類:角按旋轉(zhuǎn)方向分為正角、負角和零角. (2)所有與角α終邊相同的角,連同角α在內(nèi),構(gòu)成的角的集合是S={β|β=k360+α,k∈Z}. (3)象限角:使角的頂點與坐標原點重合,角的始邊與x軸的非負半軸重合,那么,角的終邊在第幾象限,就說這個角是第幾象限角;如果角的終邊在坐標軸上,那么這個角不屬于任何一個象限. 2.弧度制 (1)定義:把長度等于半徑長的弧所對的圓心角叫做1弧度的角,正角的弧度數(shù)是正數(shù),負角的弧度數(shù)是負數(shù),零角的弧度數(shù)是0. (2)角度制和弧度制的互化:180=π rad,1= rad,1 rad=. (3)扇形的弧長公式:l=|α|r,扇形的面積公式:S=lr=|α|r2. 3.任意角的三角函數(shù) 任意角α的終邊與單位圓交于點P(x,y)時,sin α=y(tǒng),cos α=x,tan α=(x≠0).三個三角函數(shù)的初步性質(zhì)如下表: 三角函數(shù) 定義域 第一象限符號 第二象 限符號 第三象 限符號 第四象 限符號 sin α R + + - - cos α R + - - + tan α {α|α≠kπ+,k∈Z} + - + - 4.三角函數(shù)線 如下圖,設(shè)角α的終邊與單位圓交于點P,過P作PM⊥x軸,垂足為M,過A(1,0)作單位圓的切線與α的終邊或終邊的反向延長線相交于點T. 三角函 數(shù)線 有向線段MP為正弦線;有向線段OM為余弦線;有向線段AT為正切線 【思考辨析】 判斷下面結(jié)論是否正確(請在括號中打“√”或“”) (1)角α終邊上點P的坐標為(-,),那么sin α=,cos α=-;同理角α終邊上點Q的坐標為(x0,y0),那么sin α=y(tǒng)0,cos α=x0.( ) (2)銳角是第一象限角,反之亦然.( ) (3)終邊相同的角的同一三角函數(shù)值相等.( √ ) (4)點P(tan α,cos α)在第三象限,則角α終邊在第二象限.( √ ) (5)α∈(0,),則tan α>α>sin α.( √ ) (6)α為第一象限角,則sin α+cos α>1.( √ ) 1.角-870的終邊所在的象限是第________象限. 答案 三 解析 由-870=-1 080+210,知-870角和210角終邊相同,在第三象限. 2.已知2弧度的圓心角所對的弦長為2,那么這個圓心角所對的弧長是________. 答案 解析 設(shè)圓的半徑為r,則sin 1=,∴r=, ∴2弧度的圓心角所對弧長為2r=. 3.已知角θ的頂點為坐標原點,始邊為x軸的正半軸,若P(4,y)是角θ終邊上一點,且sin θ=-,則y=____________. 答案?。? 解析 因為sin θ==-, 所以y<0,且y2=64,所以y=-8. 4.函數(shù)y=的定義域為________. 答案 (k∈Z) 解析 ∵2cos x-1≥0, ∴cos x≥. 由三角函數(shù)線畫出x滿足條件的終邊范圍(如圖陰影所示). ∴x∈(k∈Z). 題型一 角及其表示 例1 (1)終邊在直線y=x上的角的集合是________. (2)如果α是第三象限角,那么角2α的終邊落在________. 答案 (1){α|α=kπ+,k∈Z} (2)第一、二象限或y軸的非負半軸上 解析 (1)∵在(0,π)內(nèi)終邊在直線y=x上的角是, ∴終邊在直線y=x上的角的集合為{α|α=+kπ,k∈Z}. (2)∵2kπ+π<α<2kπ+π,k∈Z, ∴4kπ+2π<2α<4kπ+3π,k∈Z. ∴角2α的終邊落在第一、二象限或y軸的非負半軸上. 思維升華 (1)利用終邊相同的角的集合可以求適合某些條件的角,方法是先寫出與這個角的終邊相同的所有角的集合,然后通過對集合中的參數(shù)k賦值來求得所需的角. (2)利用終邊相同的角的集合S={β|β=2kπ+α,k∈Z}判斷一個角β所在的象限時,只需把這個角寫成[0,2π)范圍內(nèi)的一個角α與2π的整數(shù)倍的和,然后判斷角α的象限. (1)在直角坐標平面內(nèi),對于始邊為x軸非負半軸的角,下列命題中正確的是________.(填序號) ①第一象限中的角一定是銳角; ②終邊相同的角必相等; ③相等的角終邊一定相同; ④不相等的角終邊一定不同. (2)已知角α=45,在區(qū)間[-720,0]內(nèi)與角α有相同終邊的角β=________. 答案 (1)③ (2)-675或-315 解析 (1)第一象限角是滿足2kπ<α<2kπ+,k∈Z的角,當k≠0時,它都不是銳角,與角α終邊相同的角是2kπ+α,k∈Z;當k≠0時,它們都與α不相等,亦即終邊相同的角可以不相等,但不相等的角終邊可以相同. (2)由終邊相同的角關(guān)系知β=k360+45,k∈Z, ∴取k=-2,-1,得β=-675或β=-315. 題型二 三角函數(shù)的概念 例2 (1)已知角θ的頂點與原點重合,始邊與x軸的正半軸重合,終邊在直線y=2x上,則cos 2θ=________. (2)若sin αtan α<0,且<0,則角α是第________象限角. 思維點撥 (1)由于三角函數(shù)值與選擇終邊上的哪個點沒有關(guān)系,因此知道了終邊所在的直線,可在這個直線上任取一點,然后按照三角函數(shù)的定義來計算,最后用倍角公式求值. (2)可以根據(jù)各象限內(nèi)三角函數(shù)值的符號判斷. 答案 (1)- (2)三 解析 (1)取終邊上一點(a,2a),a≠0,根據(jù)任意角的三角函數(shù)定義,可得cos θ=, 故cos 2θ=2cos2θ-1=-. (2)由sin αtan α<0可知sin α,tan α異號,從而角α為第二或第三象限角. 由<0可知cos α,tan α異號,從而角α為第三或第四象限角,故角α為第三象限角. 思維升華 (1)利用三角函數(shù)的定義,求一個角的三角函數(shù)值,需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r. (2)根據(jù)三角函數(shù)定義中x、y的符號來確定各象限內(nèi)三角函數(shù)的符號,理解并記憶:“一全正、二正弦、三正切、四余弦”. (1)已知角α的終邊過點P(-8m,-6sin 30),且cos α=-,則m的值為________. (2)若θ是第二象限角,則________0.(判斷大小) 答案 (1) (2)< 解析 (1)∵r=, ∴cos α==-, ∴m>0,∴=,即m=. (2)∵θ是第二象限角,∴-1- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 教案 2019-2020年人教A版高中數(shù)學 高三一輪文 第三章 3-1角的概念及任意角的三角函數(shù)教案 2019 2020 年人教 高中數(shù)學 一輪 第三 概念 任意 三角函數(shù)
鏈接地址:http://m.zhongcaozhi.com.cn/p-6191667.html