2018-2019高中數(shù)學(xué) 第3章 導(dǎo)數(shù)及其應(yīng)用 習(xí)題課 導(dǎo)數(shù)的應(yīng)用學(xué)案 蘇教版選修1 -1.docx
《2018-2019高中數(shù)學(xué) 第3章 導(dǎo)數(shù)及其應(yīng)用 習(xí)題課 導(dǎo)數(shù)的應(yīng)用學(xué)案 蘇教版選修1 -1.docx》由會員分享,可在線閱讀,更多相關(guān)《2018-2019高中數(shù)學(xué) 第3章 導(dǎo)數(shù)及其應(yīng)用 習(xí)題課 導(dǎo)數(shù)的應(yīng)用學(xué)案 蘇教版選修1 -1.docx(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
習(xí)題課 導(dǎo)數(shù)的應(yīng)用 學(xué)習(xí)目標 1.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.2.理解函數(shù)的極值、最值與導(dǎo)數(shù)的關(guān)系.3.掌握函數(shù)的單調(diào)性、極值與最值的綜合應(yīng)用. 知識點一 函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系 定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f(x) f′(x)的正負 f(x)的單調(diào)性 f′(x)>0 單調(diào)遞增 f′(x)<0 單調(diào)遞減 知識點二 求函數(shù)y=f(x)的極值的方法 解方程f′(x)=0,當(dāng)f′(x0)=0時, (1)如果在x0附近的左側(cè)f′(x)>0,右側(cè)f′(x)<0,那么f(x0)是極大值. (2)如果在x0附近的左側(cè)f′(x)<0,右側(cè)f′(x)>0,那么f(x0)是極小值. 知識點三 函數(shù)y=f(x)在[a,b]上最大值與最小值的求法 1.求函數(shù)y=f(x)在(a,b)內(nèi)的極值. 2.將函數(shù)y=f(x)的極值與端點處的函數(shù)值f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值. 1.函數(shù)y=xlnx在上是減函數(shù).( √ ) 2.若函數(shù)y=ax-lnx在內(nèi)單調(diào)遞增,則a的取值范圍為(2,+∞).( ) 3.設(shè)函數(shù)f(x)=x(x-c)2在x=2處有極大值,則c=2.( ) 4.函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為.( √ ) 類型一 導(dǎo)數(shù)與函數(shù)單調(diào)性 例1 已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中g(shù)(x)的函數(shù)圖象在點(1,g(1))處的切線平行于x軸. (1)確定a與b的關(guān)系; (2)若a≥0,試討論函數(shù)g(x)的單調(diào)性. 考點 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值 題點 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性 解 (1)依題意得g(x)=lnx+ax2+bx, 則g′(x)=+2ax+b. 由函數(shù)g(x)的圖象在點(1,g(1))處的切線平行于x軸得g′(1)=1+2a+b=0, ∴b=-2a-1. (2)由(1)得 g′(x)==. ∵函數(shù)g(x)的定義域為(0,+∞), ∴當(dāng)a=0時,g′(x)=-. 由g′(x)>0得0<x<1,由g′(x)<0得x>1,即函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減; 當(dāng)a>0時,令g′(x)=0得x=1或x=, 若<1,即a>,由g′(x)>0得x>1或0<x<, 由g′(x)<0得<x<1, 即函數(shù)g(x)在,(1,+∞)上單調(diào)遞增,在上單調(diào)遞減; 若>1,即0<a<,由g′(x)>0得x>或0<x<1,由g′(x)<0得1<x<, 即函數(shù)g(x)在(0,1),上單調(diào)遞增,在上單調(diào)遞減; 若=1,即a=,在(0,+∞)上恒有g(shù)′(x)≥0, 即函數(shù)g(x)在(0,+∞)上單調(diào)遞增. 綜上可得,當(dāng)a=0時,函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減; 當(dāng)00,故f(x)在(0,+∞)上單調(diào)遞增; ②當(dāng)a≤0時,f′(x)<0,故f(x)在(0,+∞)上單調(diào)遞減; ③當(dāng)00,故f(x)在上單調(diào)遞減, 在上單調(diào)遞增. 綜上所述,當(dāng)a≥1時,f(x)在(0,+∞)上單調(diào)遞增; 當(dāng)a≤0時,f(x)在(0,+∞)上單調(diào)遞減; 當(dāng)00. 要使g(x)=0在[1,3]上恰有兩個相異的實根, 則解得-2- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019高中數(shù)學(xué) 第3章 導(dǎo)數(shù)及其應(yīng)用 習(xí)題課 導(dǎo)數(shù)的應(yīng)用學(xué)案 蘇教版選修1 -1 2018 2019 高中數(shù)學(xué) 導(dǎo)數(shù) 及其 應(yīng)用 習(xí)題 蘇教版 選修
鏈接地址:http://m.zhongcaozhi.com.cn/p-6306349.html