購買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢QQ:1304139763
落 料 凹 模 工 藝 過 程 卡 工序號(hào) 工序名稱 工 序 內(nèi) 容 設(shè) 備 1 下 料 選用型鋼鋸床下料至坯料所需尺寸 鋸 床 2 鍛 造 將坯料鍛成矩形 鍛 床 3 熱處理 球化退火降低鍛坯硬度 改善切削加工 性 并消除鍛造后的應(yīng)力 熱處理爐 4 粗磨 磨上 下兩平面保證平行度 磨相互垂 直的兩側(cè)面 磨 床 5 劃 線 以已磨的兩側(cè)面為基準(zhǔn) 劃出凹模及孔 的中心線 打樣沖 鉆穿絲孔 鉗工臺(tái) 鉆床 6 線切割 割出凹模中間的孔 線切割機(jī)床 7 熱處理 淬火后低溫回火 HRC58 62 熱處理爐 8 磨 磨上 下兩平面達(dá)到圖紙要求 磨床 9 型孔精修 鉗工研磨型孔達(dá)到圖紙要求 落料凹 模 的 線 切 割 程 序 該凹模需要加工的地方為中間的孔 程序?yàn)?1 2B28923 B25986 B28923 GX L2 2 3 B16923 B18402 B40129 GY SR3 3 4 B28923 B25986 B28923 GX L1 4 5 B76000 B0 B76000 GX L1 5 6 B28923 B25986 B28923 GX L4 6 7 B16923 B18402 B40129 GY SR 1 7 8 B28923 B25986 B28923 GX L3 8 1 B76000 B0 B76000 GX L2 第 0 頁 共 27 頁 Process simulation in stamping recent applications for product and process design Abstract Process simulation for product and process design is currently being practiced in industry However a number of input variables have a significant effect on the accuracy and reliability of computer predictions A study was conducted to evaluate the capability of FE simulations for predicting part characteristics and process conditions in forming complex shaped industrial parts In industrial applications there are two objectives for conducting FE simulations of the stamping process 1 to optimize the product design by analyzing formability at the product design stage and 2 to reduce the tryout time and cost in process design by predicting the deformation process in advance during the die design stage For each of these objectives two kinds of FE simulations are applied Pam Stamp an incremental dynamic explicit FEM code released by Engineering Systems Int l matches the second objective well because it can deal with most of the practical stamping parameters FAST FORM3D a one step FEM code released by Forming Technologies matches the first objective because it only requires the part geometry and not the complex process information In a previous study these two FE codes were applied to complex shaped parts used in manufacturing automobiles and construction machinery Their capabilities in predicting formability issues in stamping were evaluated This paper reviews the results of this study and summarizes the recommended procedures for obtaining accurate and reliable results from FE simulations In another study the effect of controlling the blank holder force BHF during the deep drawing of hemispherical dome bottomed cups was investigated The standard automotive aluminum killed drawing quality AKDQ steel was used as well as high performance materials such as high strength steel bake hard steel and aluminum 6111 It was determined that varying the BHF as a function of stroke improved the strain distributions in the domed cups Keywords Stamping Process stimulation Process design 第 1 頁 共 27 頁 1 Introduction The design process of complex shaped sheet metal stampings such as automotive panels consists of many stages of decision making and is a very expensive and time consuming process Currently in industry many engineering decisions are made based on the knowledge of experienced personnel and these decisions are typically validated during the soft tooling and prototyping stage and during hard die tryouts Very often the soft and hard tools must be reworked or even redesigned and remanufactured to provide parts with acceptable levels of quality The best case scenario would consist of the process outlined in Fig 1 In this design process the experienced product designer would have immediate feedback using a specially design software called one step FEM to estimate the formability of their design This would allow the product designer to make necessary changes up front as opposed to down the line after expensive tooling has been manufactured One step FEM is particularly suited for product analysis since it does not require binder addendum or even most process conditions Typically this information is not available during the product design phase One step FEM is also easy to use and computationally fast which allows the designer to play what if without much time investment Fig 1 Proposed design process for sheet metal stampings Once the product has been designed and validated the development project would enter the time zero phase and be passed onto the die designer The die designer would validate his her design with an incremental FEM code and make necessary design changes and perhaps even optimize the process parameters to ensure not just minimum acceptability of part quality but maximum achievable quality This increases product quality but also increase process robustness Incremental FEM is particularly suited for die design analysis since it does require binder addendum and process conditions which are either known during die design or desired to be known The validated die design would then be manufactured directly into the hard production tooling and be validated with physical tryouts during which the prototype parts would be made Tryout time should be decreased due to the earlier numerical validations Redesign and remanufacturing of the tooling due to unforeseen forming problems should be a thing of the past The decrease in tryout time and elimination of redesign remanufacturing should more than make up for the time used to numerically validate the part die and process 第 2 頁 共 27 頁 Optimization of the stamping process is also of great importance to producers of sheet stampings By modestly increasing one s investment in presses equipment and tooling used in sheet forming one may increase one s control over the stamping process tremendously It has been well documented that blank holder force is one of the most sensitive process parameters in sheet forming and therefore can be used to precisely control the deformation process By controlling the blank holder force as a function of press stroke AND position around the binder periphery one can improve the strain distribution of the panel providing increased panel strength and stiffness reduced springback and residual stresses increased product quality and process robustness An inexpensive but industrial quality system is currently being developed at the ERC NSM using a combination of hydraulics and nitrogen and is shown in Fig 2 Using BHF control can also allow engineers to design more aggressive panels to take advantage the increased formability window provided by BHF control Fig 2 Blank holder force control system and tooling being developed at the ERC NSM labs Three separate studies were undertaken to study the various stages of the design process The next section describes a study of the product design phase in which the one step FEM code FAST FORM3D Forming Technologies was validated with a laboratory and industrial part and used to predict optimal blank shapes Section 4 summarizes a study of the die design stage in which an actual industrial panel was used to validate the incremental FEM code Pam Stamp Engineering Systems Int l Section 5 covers a laboratory study of the effect of blank holder force control on the strain distributions in deep drawn hemispherical dome bottomed cups 2 Product simulation applications The objective of this investigation was to validate FAST FORM3D to determine FAST FORM3D s blank shape prediction capability and to determine how one step FEM can be implemented into the product design process Forming Technologies has provided their one step FEM code FAST FORM3D and training to the ERC NSM for the purpose of benchmarking and research FAST FORM3D does not simulate the deformation history Instead it projects the final part geometry onto a flat plane or developable surface and repositions the nodes and elements until a minimum energy state is reached This process is computationally faster than incremental simulations like Pam Stamp but also makes more assumptions FAST FORM3D can evaluate formability and estimate optimal blank geometries and is a strong tool for product designers due to its speed and ease of use particularly during the stage when the die geometry is not available 第 3 頁 共 27 頁 In order to validate FAST FORM3D we compared its blank shape prediction with analytical blank shape prediction methods The part geometry used was a 5 in deep 12 in by 15 in rectangular pan with a 1 in flange as shown in Fig 3 Table 1 lists the process conditions used Romanovski s empirical blank shape method and the slip line field method was used to predict blank shapes for this part which are shown in Fig 4 Fig 3 Rectangular pan geometry used for FAST FORM3D validation Table 1 Process parameters used for FAST FORM3D rectangular pan validation Fig 4 Blank shape design for rectangular pans using hand calculations a Romanovski s empirical method b slip line field analytical method Fig 5 a shows the predicted blank geometries from the Romanovski method slip line field method and FAST FORM3D The blank shapes agree in the corner area but differ greatly in the side regions Fig 5 b c show the draw in pattern after the drawing process of the rectangular pan as simulated by Pam Stamp for each of the predicted blank shapes The draw in patterns for all three rectangular pans matched in the corners regions quite well The slip line field method though did not achieve the objective 1 in flange in the side region while the Romanovski and FAST FORM3D 第 4 頁 共 27 頁 methods achieved the 1 in flange in the side regions relatively well Further only the FAST FORM3D blank agrees in the corner side transition regions Moreover the FAST FORM3D blank has a better strain distribution and lower peak strain than Romanovski as can be seen in Fig 6 Fig 5 Various blank shape predictions and Pam Stamp simulation results for the rectangular pan a Three predicted blank shapes b deformed slip line field blank c deformed Romanovski blank d deformed FAST FORM3D blank Fig 6 Comparison of strain distribution of various blank shapes using Pam Stamp for the rectangular pan a Deformed Romanovski blank b deformed FAST FORM3D blank To continue this validation study an industrial part from the Komatsu Ltd was chosen and is shown in Fig 7 a We predicted an optimal blank geometry with FAST FORM3D and compared it with the experimentally developed blank shape as shown in Fig 7 b As seen the blanks are similar but have some differences Fig 7 FAST FORM3D simulation results for instrument cover validation a FAST FORM3D s formability evaluation b comparison of predicted and experimental blank geometries Next we simulated the stamping of the FAST FORM3D blank and the experimental blank using Pam Stamp We compared both predicted geometries to the nominal CAD geometry Fig 8 and found that the FAST FORM3D geometry was much 第 5 頁 共 27 頁 more accurate A nice feature of FAST FORM3D is that it can show a failure contour plot of the part with respect to a failure limit curve which is shown in Fig 7 a In conclusion FAST FORM3D was successful at predicting optimal blank shapes for a laboratory and industrial parts This indicates that FAST FORM3D can be successfully used to assess formability issues of product designs In the case of the instrument cover many hours of trial and error experimentation could have been eliminated by using FAST FORM3D and a better blank shape could have been developed Fig 8 Comparison of FAST FORM3D and experimental blank shapes for the instrument cover a Experimentally developed blank shape and the nominal CAD geometry b FAST FORM3D optimal blank shape and the nominal CAD geometry 3 Die and process simulation applications In order to study the die design process closely a cooperative study was conducted by Komatsu Ltd of Japan and the ERC NSM A production panel with forming problems was chosen by Komatsu This panel was the excavator s cabin left hand inner panel shown in Fig 9 The geometry was simplified into an experimental laboratory die while maintaining the main features of the panel Experiments were conducted at Komatsu using the process conditions shown in Table 2 A forming limit diagram FLD was developed for the drawing quality steel using dome tests and a vision strain measurement system and is shown in Fig 10 Three blank holder forces 10 30 and 50 ton were used in the experiments to determine its effect Incremental simulations of each experimental condition was conducted at the ERC NSM using Pam Stamp Fig 9 Actual product cabin inner panel Table 2 Process conditions for the cabin inner investigation 第 6 頁 共 27 頁 Fig 10 Forming limit diagram for the drawing quality steel used in the cabin inner investigation At 10 ton wrinkling occurred in the experimental parts as shown in Fig 11 At 30 ton the wrinkling was eliminated as shown in Fig 12 These experimental observations were predicted with Pam stamp simulations as shown in Fig 13 The 30 ton panel was measured to determine the material draw in pattern These measurements are compared with the predicted material draw in in Fig 14 Agreement was very good with a maximum error of only 10 mm A slight neck was observed in the 30 ton panel as shown in Fig 13 At 50 ton an obvious fracture occurred in the panel Fig 11 Wrinkling in laboratory cabin inner panel BHF 10 ton Fig 12 Deformation stages of the laboratory cabin inner and necking BHF 30 ton a Experimental blank b experimental panel 60 formed c experimental panel fully formed 第 7 頁 共 27 頁 d experimental panel necking detail Fig 13 Predication and elimination of wrinkling in the laboratory cabin inner a Predicted geometry BHF 10 ton b predicted geometry BHF 30 ton Fig 14 Comparison of predicted and measured material draw in for lab cabin inner BHF 30 ton Strains were measured with the vision strain measurement system for each panel and the results are shown in Fig 15 The predicted strains from FEM simulations for each panel are shown in Fig 16 The predictions and measurements agree well regarding the strain distributions but differ slightly on the effect of BHF Although the trends are represented the BHF tends to effect the strains in a more localized manner in the simulations when compared to the measurements Nevertheless these strain prediction show that Pam Stamp correctly predicted the necking and fracture which occurs at 30 and 50 ton The effect of friction on strain distribution was also 第 8 頁 共 27 頁 investigated with simulations and is shown in Fig 17 Fig 15 Experimental strain measurements for the laboratory cabin inner a measured strain BHF 10 ton panel wrinkled b measured strain BHF 30 ton panel necked c measured strain BHF 50 ton panel fractured Fig 16 FEM strain predictions for the laboratory cabin inner a Predicted strain BHF 10 ton b predicted strain BHF 30 ton c predicted strain BHF 50 ton Fig 17 Predicted effect of friction for the laboratory cabin inner BHF 30 ton a Predicted strain 0 06 b predicted strain 0 10 A summary of the results of the comparisons is included in Table 3 This table shows that the simulations predicted the experimental observations at least as well as the strain measurement system at each of the experimental conditions This indicates that Pam Stamp can be used to assess formability issues associated with the die design Table 3 Summary results of cabin inner study 4 Blank holder force control applications 第 9 頁 共 27 頁 The objective of this investigation was to determine the drawability of various high performance materials using a hemispherical dome bottomed deep drawn cup see Fig 18 and to investigate various time variable blank holder force profiles The materials that were investigated included AKDQ steel high strength steel bake hard steel and aluminum 6111 see Table 4 Tensile tests were performed on these materials to determine flow stress and anisotropy characteristics for analysis and for input into the simulations see Fig 19 and Table 5 Fig 18 Dome cup tooling geometry Table 4 Material used for the dome cup study Fig 19 Results of tensile tests of aluminum 6111 AKDQ high strength and bake hard steels a Fractured tensile specimens b Stress strain curves Table 5 Tensile test data for aluminum 6111 AKDQ high strength and bake hard steels 第 10 頁 共 27 頁 It is interesting to note that the flow stress curves for bake hard steel and AKDQ steel were very similar except for a 5 reduction in elongation for bake hard Although the elongations for high strength steel and aluminum 6111 were similar the n value for aluminum 6111 was twice as large Also the r value for AKDQ was much bigger than 1 while bake hard was nearly 1 and aluminum 6111 was much less than 1 The time variable BHF profiles used in this investigation included constant linearly decreasing and pulsating see Fig 20 The experimental conditions for AKDQ steel were simulated using the incremental code Pam Stamp Examples of wrinkled fractured and good laboratory cups are shown in Fig 21 as well as an image of a simulated wrinkled cup 第 11 頁 共 27 頁 Fig 20 BHF time profiles used for the dome cup study a Constant BHF b ramp BHF c pulsating BHF Fig 21 Experimental and simulated dome cups a Experimental good cup b experimental fractured cup c experimental wrinkled cup d simulated wrinkled cup Limits of drawability were experimentally investigated using constant BHF The results of this study are shown in Table 6 This table indicates that AKDQ had the largest drawability window while aluminum had the smallest and bake hard and high strength steels were in the middle The strain distributions for constant ramp and pulsating BHF are compared experimentally in Fig 22 and are compared with simulations in Fig 23 for AKDQ In both simulations and experiments it was found that the ramp BHF trajectory improved the strain distribution the best Not only were peak strains reduced by up to 5 thereby reducing the possibility of fracture but low strain regions were increased This improvement in strain distribution can increase product stiffness and strength decrease springback and residual stresses increase product quality and process robustness Table 6 Limits of drawability for dome cup with constant BHF Fig 22 Experimental effect of time variable BHF on engineering strain in an AKDQ steel dome cup 第 12 頁 共 27 頁 Fig 23 Simulated effect of time variable BHF on true strain in an AKDQ steel dome cup Pulsating BHF at the frequency range investigated was not found to have an effect on strain distribution This was likely due to the fact the frequency of pulsation that was tested was only 1 Hz It is known from previous experiments of other researchers that proper frequencies range from 5 to 25 Hz 3 A comparison of load stroke curves from simulation and experiments are shown in Fig 24 for AKDQ Good agreement was found for the case where 0 08 This indicates that FEM simulations can be used to assess the formability improvements that can be obtained by using BHF control techniques Fig 24 Comparison of experimental and simulated load stroke curves for an AKDQ steel dome cup 5 Conclusions and future work In this paper we evaluated an improved design process for complex stampings which involved eliminating the soft tooling phase and incorporated the validation of product and process using one step and incremental FEM simulations Also process improvements were proposed consisting of the implementation of blank holder force control to increase product quality and process robustness Three separate investigations were summarized which analyzed various stages in the design process First the product design phase was investigated with a laboratory and industrial validation of the one step FEM code FAST FORM3D and its ability to assess formability issues involved in product design FAST FORM3D was successful at predicting optimal blank shapes for a rectangular pan and an industrial instrument cover In the case of the instrument cover many hours of trial and error experimentation could have been eliminated by using FAST FORM3D and a better blank shape could have been developed Second the die design phase was investigated with a laboratory and industrial validation of the incremental code Pam Stamp and its ability to assess forming issues associated with die design This investigation suggested that Pam Stamp could predict strain distribution wrinkling necking and fracture at least as well as a vision strain 第 13 頁 共 27 頁 measurement system at a variety of experimental conditions Lastly the process design stage was investigated with a laboratory study of the quality improvements that can be realized with the implementation of blank holder force control techniques In this investigation peak strains in hemispherical dome bottomed deep drawn cups were reduced by up to 5 thereby reducing the possibility of fracture and low strain regions were increased This improvem