2514 電動關節(jié)機械手
2514 電動關節(jié)機械手,電動,關節(jié),機械手
畢業(yè)設計 (論文 )任務書學院 :機電工程學院 專業(yè):機械設計制造及其自動化 班級:學生情況 指導教師情況 題目類型理論研究 □姓 名 學 號 姓 名 職 稱 單 位科研開發(fā) □工程設計 √機電工程學院論文 □題目 電動式關節(jié)型機器人機械手的結構設計與仿真主要內容以及目標(畢業(yè)設計應完成的主要內容,設計任務達到的目標 )主要內容:(1)完成調研報告和開題報告;(2)完成電動式關節(jié)型機器人機械手的結構設計;(3)建立該機械手的三維虛擬模型并對其進行運動仿真;(4)中英文摘要各 200 字,設計說明書不少于 15000 字;(5)外文資料翻譯不少于 5000 字。目標:(1)完成電動式關節(jié)型機器人機械手的結構設計,其中包括裝配圖及關鍵的零件圖;(2)對機械手進行三維建模、虛擬裝配與仿真。成果形式(畢業(yè)設計完成具體工作量;成果形式;驗收方式)(1)3 張 A0 圖紙,包括裝配圖、零件圖;(2)調研報告、開題報告以及設計計算說明書;(3)機械手的三維虛擬模型以及運動仿真的錄像?;疽螅?對完成設計任務方面的具體要求:設計技術參數、數據及來源、調試所用儀器設備)設計技術參數:手部負重: 10kg(抓取物體的形狀為圓柱體.圓柱半徑.高度自定.密度7.8g/cm3.) 運動軸數: 數據來源:北京機械工業(yè)自動化研究所、上海發(fā)那科機器人有限公司實習調研要求(對部分有實習環(huán)節(jié)的專業(yè),提出實習或調研的具體要求,包括調研提綱、實習時間、地點和具體內容要求)(1)了解國內外工業(yè)機器人的現狀、水平和發(fā)展趨勢;(2)了解工業(yè)機器人的各個組成部分;(3)掌握電動式關節(jié)型機器人機械手的組成機構及其工作原理;(4)分析現有各種類型工業(yè)機器人的特點,如運動方式、驅動方式、控制方式等;(5)總結出本設計課題的基本實現方法及結構,分析其技術關鍵及難點;(6)做出本設計課題的設計安排,如技術線路、研究方法、設計工具、時間安排等。主要參考文獻(指導教師提供有關參考資料、工具書、期刊論文等)(1)費仁元 張慧慧. 機器人機械設計和分析.北京:北京工業(yè)大學出版社,1998(2)馬香峰. 機器人機構學.北京:機械工業(yè)出版社,1991(3)加藤一郎. 機械手圖冊.上海:上海科學技術出版社,1979(4)張鐵 謝存禧. 機器人學.廣州:華南理工大學出版社,2000(5)宗光華 張慧慧 譯. 機器人設計與控制.北京:科學出版社,2004(6)張建民. 工業(yè)機器人.北京:北京理工大學出版社,1988(7)周伯英. 工業(yè)機器人設計.北京:機械工業(yè)出版社,1995(8)索羅門采夫. 工業(yè)機器人圖冊.北京:機械工業(yè)出版社,1993(9)余達太. 工業(yè)機器人應用工程.北京:冶金工業(yè)出版社,1999(10)吳芳美. 機器人控制基礎.北京:中國鐵道出版社,1992(11)任大為. 機械設計手冊.北京:化學工業(yè)出版社,1998(12)徐灝. 新編機械設計師手冊.北京:機械工業(yè)出版社,1995(13)黃靖遠. 機械設計學.北京:機械工業(yè)出版社,1999(14)孟憲源等. 現代機構手冊(上、下冊).北京:1994主要儀器設備( 根據畢業(yè)設計題目情況需要填寫)(1)機電工程學院機器人機研究室的 FUNC(發(fā)那科)機器人;(2)機電工程學院機械創(chuàng)新設計實驗室廣茂達機器人模型以及慧魚機器人創(chuàng)意組合模型;(3)計算機一臺。畢業(yè)設計(論文)開始日期 2009-2-23 畢業(yè)設計(論文)完成日期 2009-6-19畢業(yè)設計(論文)進度計劃(起止時間、工作內容)( 指導教師對畢業(yè)設計(論文)的進度計劃提出要求 ,至少詳細到前期、中期和答辯階段)前期(到第 4 周止):對題目進行調研,確定設計方案,完成調研報告和開題報告;中期(到 10 周止):完成工作量的 60%~70%,即完成電動式關節(jié)型機器人機械手的結構設計,包括 3 張 A0圖紙的裝配圖、零件圖;后期(到 16 周止):完成所有工作量,包括對建立機械手的三維虛擬模型,進行運動仿真,對實驗室的機械手模型進行調試,完成設計計算說明書,準備答辨提綱等。指導教師(簽字): 2009 年 2 月 23 日督導教師(簽字): 年 月 日系畢業(yè)設計(論文)領導小組審查意見:組長(簽字): 年 月 日電動式關節(jié)型機器人機械手的結構設計與仿真第 1 頁摘 要本文簡要介紹了電動式關節(jié)型機器人機械手的概念,機械手硬件和軟件的組成,機械手各個部件的整體尺寸設計,氣動技術的特點。本文對機械手進行總體方案設計,確定了機械手的坐標形式和自由度,確定了機械手的技術參數。同時,設計了機械手的夾持式手部結構,設計了機械手的手腕結構,計算出了手腕轉動時所需的驅動力矩和回轉氣缸的驅動力矩。設計了機械手的手臂結構。設計出了機械手的氣動系統(tǒng),繪制了機械手氣壓系統(tǒng)工作原理圖,大大提高了繪圖效率和圖紙質量,畫出了機械手的裝配圖圖。 關鍵詞: 工業(yè)機器人 機械手 電動 電動式關節(jié)型機器人機械手電動式關節(jié)型機器人機械手的結構設計與仿真第 2 頁AbstractAt first, the paper introduces the conception of the industrial robot and the Eller. Dairy information of the development briefly. What’s more, the paper accounts for the background and the primary mission of the topic. The paper introduces the function, composing and classification of the manipulator, tells out the free-degree and the form of coordinate. At the same time, the paper gives out the primary specification parameter of this manipulator,The paper designs the structure of the hand and the equipment of the drive of the manipulator. This paper designs the structure of the wrist, computes the needed moment of the drive when the wrist wheels and the moment of the drive of the pump.The paper designs the structure of the arm. The paper institutes two control schemes of according to the work flow of the manipulator. The paper draws out the work time sequence chart and the trapezium chart. KEY WORDS: Industrial robot robot electric electric-type joints robot manipulator電動式關節(jié)型機器人機械手的結構設計與仿真第 3 頁第 1 章 緒 論1.1 緒言到目前為止,世界各國對“機器人機械手”還沒有做出統(tǒng)一的明確定義。通常所說的“機器人機械手”是一種能模擬人的手、臂的部分動作,按照予定的程序、軌跡及其它要求,實現抓取、搬運或操縱工具的自動化裝置。而“機械手”一般具有固定的手部、固定的動作程序(或簡單可變程序) 、一般用于固定工位的自動化裝置。因為國內外稱作“機器人機械手” 、 “機械手” 、 “操作機”的這三種自動化和半自動化裝置,在技術上有某些相通之處,所以有時不易明確區(qū)分,就它們的技術特征來看,其大致區(qū)別如下?!皺C器人機械手” (Industrail Robot):多數是指程序可變(編)的獨立的自動抓取、搬運工件、操縱工具的裝置(國內稱作機器人機械手或通用機械手) ?!皺C械手” (Mechanical Hand):多數是指附屬于主機、程序固定的自動抓取、操作裝置(國內一般稱作機械手或專用機械手) 。如自動線、自動線的上、下料,加工中心的自動換刀的自動化裝置?!安僮鳈C” (Manipulator):一般是指由工人操縱的半自動搬運、抓取、操作裝置。如鍛造操作機或處理放射性材料、火工品的裝配等所使用的半自動化裝置。機器人機械手(Industral Robot ,簡稱 IR)是 1960 年由《美國金屬市場》報首先使用的,但這個概念是由美國 George·C·Pevol 在 1954 年申請的專利“程序控制物料傳送裝置“時提出來的。在這專利中所記述的機器人機械手,以現在的眼光來看,就是示教再現機器人。根據這一專利,Devol 與美國 Consolide Control Corp 合作,于 1959 年研制成功采用數字控制程序自動化裝置的原型機。隨后,美國的 Unimation 公司和美國的機械鑄造(AMF) 公司于 1962 年分別制造了實用的一號機,并分別取名為 Unimate 和 Ver·satran。Unimate 機器人外形類似坦克炮塔,采用極坐標結構,而 Versatran 機器人采用圓柱坐標結構。上述兩種機器人成為機器人結構的主流,美國通用汽車公司和福特汽車公司在其金屬冷熱加工中,采用這類機器人進行壓、鑄、沖壓等上、下料,收到了良好的效果。電動式關節(jié)型機器人機械手的結構設計與仿真第 4 頁美國的機器人機械手技術的發(fā)展,大致經歷了以下幾個階段:(1) 1963~1967 年為實驗定型階段。1963~1967 年,萬能自動公司制造的機器人機械手供用戶做工藝實驗。1967 年,該公司生產的機器人機械手定型為 1900 臺。(2) 1968~1970 年為實驗應用階段。這一時期,機器人機械手在美國進入應用階段。例如美國通用汽車公司 1968 年訂購了 68 臺機器人機械手;1969年又自行研制出 SAM 型機器人機械手,并用 21 臺組成了點焊小汽車車身的焊接自動線。(3) 1970 年至今一直出于技術發(fā)展和推廣應用階段。1970~1972 年,機器人機械手處于技術發(fā)展階段。1970 年 4 月美國在伊利斯工學院研究所召開了第一屆全國機器人機械手會議。據當時統(tǒng)計,美國已采用了大約 200 臺機器人機械手,工作時間共達 60 萬小時以上。與此同時,出現了所謂高級機器人,例如森德斯蘭德公司(Sundstrand)發(fā)明了用小型計算機控制 50 臺機器人機械手的系統(tǒng)。在歐洲第一臺機器人機械手是 1963 年瑞典 Kavieldt 公司發(fā)表的第一臺操作機。日本在六十年代初期就開始研制固定程序控制的機器手,并從其他各國引進了用于不同生產過程的機器人,并獲得迅速,很快研制出日本國產華的機器人機械手,技術水平很快趕上了美國并超過了其它國家,目前機器人機械手在日本已得到迅速發(fā)展并很快得到普及。我國雖然開始研制機器人機械手僅比日本晚 5~6 年,但由于種種原因,機器人機械手的技術發(fā)展比較慢。但目前已引起了有關方面的極大關注。除了引進、消化、仿制外,已經具備了一定的獨立設計和研制能力。在 1958 年維吾爾自治區(qū)成立 30 年大慶站展覽館展出了由機械局研制的跳舞機器人《阿依古麗》 。在 1986 年地十六屆廣交會上,成都電訊工程學院研制的第三代仿人機器人《成蓉小姐》已經用漢語或英語向來賓問好,并能簡要的介紹的展覽產品及回答簡單問話。西北電訊工程學院研制的微機控制示教再現式機器人《西電 I 號 》 ,也于 1985 年 9 月在陜西省科技貿易大會上進行了表演。此外,清華大學自動化系研制的具有視覺手眼系統(tǒng),北京鋼鐵學院研制的焊接機器人,均電動式關節(jié)型機器人機械手的結構設計與仿真第 5 頁已達到了較高的水平。同時,在機器人學科中的視覺、聽覺、語音合成、觸覺、計算控制以及人工智能諸領域研究,也取得了一定的進展。近幾年來的成就表明,我國機器人技術已經邁出了可喜的一步。相信在不久的將來,我們一定回趕上世界各國前進的步伐。 1.2 課題工作要求為了保證機器人在抓取工件時的精確度,我們在機器人的手部安裝了力覺傳感器。用以對機器人的檢測和監(jiān)控。該檢測系統(tǒng)運用的是閉環(huán)控制。整個抓取動作的流程見圖。NY初始化手部下降夾持工件是否夾緊?手臂伸長手臂上升手腕回轉 180 度手臂回轉 180 度手爪松開手臂縮回回到原位啟動電動式關節(jié)型機器人機械手的結構設計與仿真第 6 頁圖 1.1 機械手的工作程序圖1.3 課題基本參數的確定1、手部負重:10kg(抓取物體的形狀為圓柱體.圓柱半徑.高度自定.密度7.8g/cm3.) 2、自由度數:4 個,沿 Z 軸的上下移動,繞 Z 軸轉動,沿 X 軸的伸縮,繞 X 軸的轉動3、坐標型式:圓柱坐標,其圓柱坐標型式的運動簡圖如圖所示(見圖1)4、最大工作半徑:1800mm,最小工作半徑 1350mm5、手臂最高中心位置:1012mm或伺服電機上端最高行程:1387mm(見圖 2)最小行程:1237mm6、手臂運動參數:伸縮行程(X):450伸縮速度:〈250mm/s升降行程(Z):150mm升降速度:〈60mm/s回轉范圍(φ):0~180 度回轉速度:〈70/sω φ XZ 圖 1.2 電動式關節(jié)型機器人機械手的結構設計與仿真第 7 頁7、手腕運動參數:回轉范圍(ω):0~180回轉速度:90/s8、手臂握力:由 N=0.5/f*G 定這里取 f=0.1 G=10kgN=0.5/f*G=50kg即手指握力為 50kg9、定位方式:閉環(huán)伺服定位10、 重復定位精度:±0.05mm11、 驅動方式:電氣(伺服電機)12、 控制方式:采用 MGS-51 單片微機電動式關節(jié)型機器人機械手的結構設計與仿真第 8 頁第 2 章 結構的設計2.1 手部機構手部機構是機器人機械手直接與工件、工具等接觸的部件,它能執(zhí)行人手的部分功能。目前,根據被抓取工件、工件等的形狀、尺寸、重量、易碎性、表面粗糙度的不同,在工業(yè)生產中使用著多種形式的手部機構,最常見的是鉗爪式、磁吸式和氣吸式,也有少數的特殊形式。不同形式的手部機構其夾緊力的計算各有不同。鉗爪式手部機構是最常見的形式之一。手爪有兩個、三個或多個,其中兩個的最多。抓取工件的方式有兩種:外卡式和內撐式。從其機械機構特征、外觀與功用來看,有多種形式,它們分別是:(1) 撥桿杠桿式鉗爪(2) 平行連桿式鉗爪(3) 齒輪齒條移動式鉗爪(4) 重力式鉗爪(5) 自鎖式鉗爪(6) 自動定心鉗爪(7) 抓取不同直徑工件的鉗爪(8) 具有壓力接觸銷的鉗爪(9) 抓勾與定位銷十鉗爪(10) 復雜形狀工件用的自動調整式鉗爪(11) 同時抓取一對工件的鉗爪與內撐式三指鉗爪(12) 特殊式手指鉗爪同時對鉗爪的選用也非常重要,應考慮以下幾個方面:1 應具有足夠的夾緊力,這樣才能防止工件在移動過程中脫落,一般夾緊力為工件重量的 2 到 3 倍。2 應具有足夠的張開角,來適應它抓取和松開工件之間較大的直徑范圍,而且夾持工件中心位置變化要小(即定位誤差?。?。3 應具有足夠的強度和剛度,以免承受在運動過程中產生的慣性力和震動的影響。電動式關節(jié)型機器人機械手的結構設計與仿真第 9 頁4 應能保證工件的可靠定位5 應適應被抓取對象的要求6 盡可能具有一定的通用性 夾持式手部結構由手指(或手爪)和傳力機構所組成。其傳力結構形式比較多,如滑槽杠桿式、斜楔杠桿式、齒輪齒條式、彈簧杠桿式等。2.1.1手指的形狀和分類夾持式是最常見的一種,其中常用的有兩指式、多指式和雙手雙指式:按手指夾持工件的部位又可分為內卡式(或內漲式)和外夾式兩種:按模仿人手手指的動作,手指可分為一支點回轉型,二支點回轉型和移動型(或稱直進型),其中以二支點回轉型為基本型式。當二支點回轉型手指的兩個回轉支點的距離縮小到無窮小時,就變成了一支點回轉型手指;同理,當二支點回轉型手指的手指長度變成無窮長時,就成為移動型。回轉型手指開閉角較小,結構簡單,制造容易,應用廣泛。移動型應用較少,其結構比較復雜龐大,當移動型手指夾持直徑變化的零件時不影響其軸心的位置,能適應不同直徑的工件。2.1.2設計時考慮的幾個問題(一)具有足夠的握力(即夾緊力)在確定手指的握力時,除考慮工件重量外,還應考慮在傳送或操作過程中所產生的慣性力和振動,以保證工件不致產生松動或脫落。(二)手指間應具有一定的開閉角兩手指張開與閉合的兩個極限位置所夾的角度稱為手指的開閉角。手指的開閉角應保證工件能順利進入或脫開,若夾持不同直徑的工件,應按最大直徑的工件考慮。對于移動型手指只有開閉幅度的要求。(三)保證工件準確定位為使手指和被夾持工件保持準確的相對位置,必須根據被抓取工件的形狀,選擇相應的手指形狀。例如圓柱形工件采用帶“V”形面的手指,以便自動定心。(四)具有足夠的強度和剛度手指除受到被夾持工件的反作用力外,還受到機械手在運動過程中所產電動式關節(jié)型機器人機械手的結構設計與仿真第 10 頁生的慣性力和振動的影響,要求有足夠的強度和剛度以防折斷或彎曲變形,當應盡量使結構簡單緊湊,自重輕,并使手部的中心在手腕的回轉軸線上,以使手腕的扭轉力矩最小為佳。(五)考慮被抓取對象的要求根據機械手的工作需要,通過比較,我們采用的機械手的手部結構是一支點, 兩指回轉型,由于工件多為圓柱形,故手指形狀設計成V型,其結構如附圖所示。2.1.3手部夾緊的設計1、手部驅動力計算本課題電動機械手的手部結構如圖2-1所示:圖2-1齒輪齒條式手部其工件重量G=10公斤,電動式關節(jié)型機器人機械手的結構設計與仿真第 11 頁V形手指的角度 , ,摩擦系數為?120??mRb24??10.?f(1)根據手部結構的傳動示意圖,其驅動力為:RbpN(2)根據手指夾持工件的方位 ,可得握力計算公式:)(5.0????tg)(2426. 'N??所以 Rbp2?)(45(3)實際驅動力:?21K?實 際1、因為傳力機構為齒輪齒條傳動,故取 ,并取 。若被抓取工94.0??5.1?K件的最大加速度取 時,則:ga3?12?gaK所以 )(5694.0125Np?實 際所以夾持工件時所需夾緊的驅動力為 。15632.2 手腕結構設計2.2.1 手腕的自由度手腕是連接手部和手臂的部件,它的作用是調整或改變工件的方位,因而它具有獨立的自由度,以使機械手適應復雜的動作要求。手腕自由度的選用與機械手的通用性、加工工藝要求、工件放置方位和定位精度等許多因素有關。由于本機械手抓取的工件是水平放置,同時考慮到通用性,因此給手腕設一繞x軸轉動回轉運動才可滿足工作的要求目前實現手腕回轉運動的機構,因此我們選用。它的結構緊湊,但回轉角度小于 ,并且要求嚴格的密封。?360電動式關節(jié)型機器人機械手的結構設計與仿真第 12 頁2.2.2 手腕的驅動力矩的計算手腕轉動時所需的驅動力矩手腕的回轉、上下和左右擺動均為回轉運動,驅動手腕回轉時的驅動力矩必須克服手腕起動時所產生的慣性力矩,手腕的轉動軸與支承孔處的摩擦阻力矩,動片與徑、定片、端蓋等處密封裝置的摩擦阻力矩以及由于轉動件的中心與轉動軸線不重合所產生的偏重力矩.圖2-2所示為手腕受力的示意圖。1.工件2.手部3.手腕圖2-2手碗回轉時受力狀態(tài)手腕轉動時所需的驅動力矩可按下式計算:封摩偏慣驅 MM??式中: - 驅動手腕轉動的驅動力矩( );驅 cmN?- 慣性力矩( );慣 cmN?- 參與轉動的零部件的重量(包括工件、手部、手腕回轉的動片)對轉偏電動式關節(jié)型機器人機械手的結構設計與仿真第 13 頁動軸線所產生的偏重力矩( ).cmN?- 手腕回轉的動片與定片、徑、端蓋等處密封裝置的摩擦阻力封M矩( );cmN?下面以圖2-3所示的手腕受力情況,分析各阻力矩的計算:1、手腕加速運動時所產生的慣性力矩M悅若手腕起動過程按等加速運動,手腕轉動時的角速度為 ,起動過程所用的?時間為 ,則:t?).(1cmNtJ???)(慣式中: - 參與手腕轉動的部件對轉動軸線的轉動慣量 ;J ).(2scmN- 工件對手腕轉動軸線的轉動慣量 。1 ).(2scN若工件中心與轉動軸線不重合,其轉動慣量 為:1JgGJc1??21e式中: - 工件對過重心軸線的轉動慣量 :c ).(2scmN- 工件的重量(N);1- 工件的重心到轉動軸線的偏心距(cm),e- 手腕轉動時的角速度(弧度/s);?- 起動過程所需的時間(s);t?— 起動過程所轉過的角度(弧度)。?2、手腕轉動件和工件的偏重對轉動軸線所產生的偏重力矩M偏+ ( )?偏 1eG3cmN?式中: - 手腕轉動件的重量(N);3- 手腕轉動件的重心到轉動軸線的偏心距(cm)3當工件的重心與手腕轉動軸線重合時,則 .1eG0?3、手腕轉動軸在軸頸處的摩擦阻力矩 封M( )?封M)(21dRfBA?cmN?式中: , - 轉動軸的軸頸直徑 (cm);1d電動式關節(jié)型機器人機械手的結構設計與仿真第 14 頁- 摩擦系數,對于滾動軸承 ,對于滑動軸承 ;f 01.?f 1.0?f, - 處的支承反力(N),可按手腕轉動軸的受力分析求解,ARB根據 ,得:0??)( FM3lG?l12Bl31?同理,根據 (F) ,得:B?0?llGlGRA )()()( 321????式中: - 的重量(N)2,— 如圖4-1所示的長度尺寸 (cm).31,l4、轉的動片與徑、定片、端蓋等處密封裝置的摩擦阻力矩M封,與選用的密襯裝置的類型有關,應根據具體情況加以分析。驅動力矩計算手腕回轉的尺寸及其校核1.尺寸設計長度設計為 ,內徑為 =96mm,半徑 ,軸徑mb10?1DmR48?=26mm,半徑 ,運行角速度 = ,加速度時間D262R3??s/90?=0.1s, 壓強 ,t?MPa4.則力矩:2)(rRpbM??).(63)026.48.(104.6mN???2.尺寸校核(1)測定參與手腕轉動的部件的質量 ,分析部件的質量分布情況,kgm10?質量密度等效分布在一個半徑 的圓盤上,那么轉動慣量:r5電動式關節(jié)型機器人機械手的結構設計與仿真第 15 頁21rmJ?05.?( )12.?2.mkg工件的質量為5 ,質量分布于長 的棒料上,那么轉動慣量:ml10?).(042.1.22mkglJc??假如工件中心與轉動軸線不重合,對于長 的棒料來說,最大偏心距ml10?,其轉動慣量為:e51).(067.54221mkgeJc???慣MtJ??1).(3261.09705N??(2)手腕轉動件和工件的偏重對轉動軸線所產生的偏重力矩為M偏,考慮手腕轉動件重心與轉動軸線重合, ,夾持工件一端時工件重心偏離轉動軸線 ,01?e me503?則:+ 偏 1G3).(5205.0mN????(3)手腕轉動軸在軸頸處的摩擦阻力矩為 ,對于滾動軸承 ,對摩M01.?f電動式關節(jié)型機器人機械手的結構設計與仿真第 16 頁于滑動軸承 =0.1, , 為手腕轉動軸的軸頸直徑, , f1d2 md301?, , 為軸頸處的支承反力,粗略估計 , ,md20?ARB NRAB15摩M)(12f?)03.5.03. ??)(5.N4.回轉的動片與徑、定片、端蓋等處密封裝置的摩擦阻力矩M封,與選用的密襯裝置的類型有關,應根據具體情況加以分析。在此處估計 為 的3倍,封M摩3 封 ??摩05.)(1mN?封摩偏慣驅 MM??15.0.523.6)(9〈驅設計尺寸符合使用要求,安全。?2.3手臂伸縮,升降,的尺寸設計與校核2.3.1 手臂伸縮的尺寸設計與校核手臂伸縮的尺寸設計手臂伸縮采用煙臺氣動元件廠生產的標準,參看此公司生產的各種型號的結構特點,尺寸參數,結合本設計的實際要求,尺寸系列初選內徑為100/63。?尺寸校核1. 在校核尺寸時,只需校核內徑 =63mm,半徑R=31.5mm的的尺寸滿足使用1D要求即可,設計使用壓強 ,MPa4.0?電動式關節(jié)型機器人機械手的結構設計與仿真第 17 頁則驅動力:2RPF???)(1460315..02N?2.測定手腕質量為50kg,設計加速度 ,則慣性力:)/(0sma?maF?1)(50N?3.考慮活塞等的摩擦力,設定摩擦系數 ,2.0?k1.Fkm?)(052N?總受力?mF??1)(605?0所以標準CTA的尺寸符合實際使用驅動力要求。導向裝置氣壓驅動的機械手臂在進行伸縮運動時,為了防止手臂繞軸線轉動,以保證手指的正確方向,并使活塞桿不受較大的彎曲力矩作用,以增加手臂的剛性,在設計手臂結構時,應該采用導向裝置。具體的安裝形式應該根據本設計的具體結構和抓取物體重量等因素來確定,同時在結構設計和布局上應該盡量減少運動部件的重量和減少對回轉中心的慣量。導向桿目前常采用的裝置有單導向桿,雙導向桿,四導向桿等,在本設計中才用單導向桿來增加手臂的剛性和導向性。平衡裝置在本設計中,為了使手臂的兩端能夠盡量接近重力矩平衡狀態(tài),減少手抓一側重力矩對性能的影響,故在手臂伸縮一側加裝平衡裝置,裝置內加放砝電動式關節(jié)型機器人機械手的結構設計與仿真第 18 頁碼,砝碼塊的質量根據抓取物體的重量的運行參數視具體情況加以調節(jié),務求使兩端盡量接近平衡。2.3.2 手臂升降的尺寸設計與校核尺寸設計運行長度設計為 =118mm,內徑為 =110mm,半徑R=55mm,運行速度,加速l1D度時間 =0.1s,壓強p=0.4MPa,則驅動力:t?`20.RpG??2605.143?)(79N尺寸校核1.測定手腕質量為80kg,則重力: mgG?)(801N?2.設計加速度 ,則慣性力:)/5sa?mG1)(408N??3.考慮活塞等的摩擦力,設定一摩擦系數 ,1.0?k1.Gkm)(40N??總受力?mq?1)(2408?Gq?所以設計尺寸符合實際使用要求。2.3.3 手臂的尺寸設計與校核電動式關節(jié)型機器人機械手的結構設計與仿真第 19 頁尺寸設計長度設計為 ,內徑為 ,半徑R=105mm,軸徑mb120?mD210?半徑 ,運行角速度 = ,加速度時間 0.5s,壓D402?R?s/9? t??強 ,MPa.則力矩: 2)(rpb?).(5)02.15.(04.6mN???5.3.2 尺寸校核1.測定參與手臂轉動的部件的質量 ,分析部件的質量分布情kgm120?況,質量密度等效分布在一個半徑 的圓盤上,那么轉動慣量:r2021rmJ?0.2?( )6.?2.mkgtJM???.慣).(108596mN?考慮軸承,油封之間的摩擦力,設定一摩擦系數 ,2.0?k慣摩 Mk.?)( mN.451082?總驅動力矩:電動式關節(jié)型機器人機械手的結構設計與仿真第 20 頁摩慣驅 M??)( mN.413508〈驅設計尺寸滿足使用要求。?電動式關節(jié)型機器人機械手的結構設計與仿真第 21 頁第3章 控制系統(tǒng)設計由于微型計算機具有體積小,可靠性高,靈活性強,易于配置,功能豐富及價格便宜等特點,采用微型計算機對工業(yè)機器人進行控制,已經成為當今機器人控制技術研究和發(fā)展的主流。機械手的控制系統(tǒng),原則上可分為點位控制與連續(xù)軌跡控制兩大類。點位控制只要求按規(guī)定精度從起始點到達預定點,而對移動路徑不做要求。連續(xù)軌跡不僅與運動的起點與終點有關,還必須保證運動軌跡與設計軌跡一致。因此,在連續(xù)軌跡控制中要進行軌跡設計,并對任意運動軌跡進行補插(補間)運算。為了機器人運動平穩(wěn),就必須保證機器人的運動速度、加速度連續(xù),這無疑也需要進行復雜的運算。微型計算機對機器人的控制,一般采用分層控制的方法。第一層為最高層,其任務是識別工作空間,并據此決定如何完成給定的任務;第二層是決策層,其任務是將給定的操作分成基本的運動;第三層是策略層,其工能是將基本的運動轉化成各自由度的運動;第四層是執(zhí)行層,它將控制機器人完成各自由度的運動。其中第一層及第二層屬于人工智能的范疇,機器人的控制主要是研究第三、第四層。微型計算機種類很多,一般均由以下三部分組成。A. 中央處理器 CPU,或稱微處理器 MPU。B. 內存儲器,即主記憶裝置 ROM 及 RAM 。C. 輸入輸出裝置 I/O,或稱接口裝置,聯系這些裝置的為三條總線,即數據總線 DB,地址總線 AB 及控制總線 CB。不同型號的微型計算機主要是中央處理器 CPU 的內容的功能不同,因而有不同的指令系統(tǒng)和匯編語言。由于外部設備之不同以及是否用于實時控制,其 I/O 接口裝置因而很大差異。RAM 和 ROM 的存儲量大小直接影響計算機的應用范圍。但一般微型計算機都可以在原有存儲量的基礎上加以擴充。本機器人的控制系統(tǒng)的組織結構如圖 3-1。它由主 CPU 板、I/O 板、控制面板、示教盒、伺服板、和穩(wěn)壓電源板等組成。電動式關節(jié)型機器人機械手的結構設計與仿真第 22 頁主 CPU 板是本控制器的核心,其上有 CPU、存儲器、多級中斷控制電路、脈沖分配電路、讀位置電路以及串行通訊電路等,完成系統(tǒng)的管理、控制運算、伺服系統(tǒng)控制和仿置檢測等控制功能以及與示教盒、控制板的通訊。I/O 接口板主要負責輸入輸出和監(jiān)測各種故障報警的輸入信號。伺服板共 8塊,負責完成四個軸的位置環(huán)速度環(huán)和電流環(huán)的伺服控制。本次控制系統(tǒng)設計主要設計 CPU、ROM 和 RAM 中斷處理電路示教盒以及串行通訊電路鍵盤顯示電路這幾個部分。1.CPU 與存儲器CPU 采用 8031 微處理器地址譯碼器內存 RAM 和 EPROM 以及鎖存器組成。(1) 8031 的結構1)寄存器堆8031 中有 12 個通用寄存器,6 個專用寄存器,兩個累加器和兩個標志寄存器。由于寄存器很多,故稱其為堆。它們各個單元不是以序號作為地址號,而是以其名稱作為地址號。它們全是靜態(tài) RAM 實現。伺服板圖 3-1 控制系統(tǒng)組織結構圖示教盒控制板I/O 端口及電平轉換電路伺服控制電路機器人8031CPURAMROM輔助運算回路串行通訊電路串行中斷電路 脈沖分配電路讀位置電路電動式關節(jié)型機器人機械手的結構設計與仿真第 23 頁各寄存器的功能如下:堆棧指示器 SP:它是一個 8 位的專用寄存器。用以指示堆棧區(qū)的最上面的存儲單元的地址,即棧頂地址。堆棧指示器是在計算機中接受中斷要求而去處理某些外部設備提出的請求時需要用到的寄存器。系統(tǒng)復位后,SP 初始化為 07H,使得堆棧事實由 08H 單元開始??紤]到 08H~1FH 單元分屬與工作寄存器區(qū) 1~3,若程序設計中要用到這些區(qū),則最好把 SP 值改置為 1FH 或更大值。由于棧指針是一個 8 位的專用寄存器,其值可由軟件改變,因此在內部RAM 中的位置比較靈活。響應中斷或子程序調用時,發(fā)生入棧操作,入棧的是 16 位 PC 值,PSW 并不自動入棧。在指令系統(tǒng)中有棧操作指令 PUSH(壓入)和 POP(彈出) ,如有必要,中斷時可用把 PSW 的內容壓入堆棧,加以保護,返回前用 POP 指令恢復。除用軟件直接改變 SP 值外,在執(zhí)行 PUSH、POP 、各種程序調用、中斷響應、子程序返回 RETI 等指令時,SP 值將自動增量或減量。 變址寄存器 IX 及 IY:它們能將其內容加減一個稱作偏移量的數,以達到一個新的地址。中斷向量地址寄存器 IV:這個寄存器用以存放中斷服務子程序的入口地址。存儲器刷新寄存器 R:8031 可以使用動態(tài)存儲器。刷新存儲器是再生時進行計數用的。特殊功能寄存器 SFR:8031 單片機片內的 SFR 與存儲器是獨立的,但它能像訪問內部 RAM 一樣被訪問。8031 單片機具有 21 個特殊功能寄存器,可分為 3 個 16 位寄存器和 15 個 8 位寄存器。這些寄存器分散地分布在片內 RAM的高 128 字節(jié)地址 80H~FFH,訪問這些專用寄存器僅允許使用直接尋址的方式。寄存器并未占滿 80H~FFH 整個地址空間,對空閑地址的操作是無意義的。片內的 SFR 能綜合的實時反映整個單片機基本系統(tǒng)內部的工作狀態(tài)及工作方式。因此,它是非常重要的。對單片機應用者來說,掌握個各 SFR 的工作狀態(tài),工作方式,從而實現對整個單片機系統(tǒng)的控制具有重要的意義。表 3-1 列出了個SFR 的名稱幾地址。電動式關節(jié)型機器人機械手的結構設計與仿真第 24 頁·ACC 累加器 0E0H·B B 寄存器 0F0H·PSW 程序狀態(tài)字堆棧指針 0D0HSP 堆棧指針 81HDPTR 數據指針(包括 DPH和(DPL )口 083H 和 82H·P0 口 0 80H·P1 口 1 90H·P2 口 2 0A0H·P3 口 3 0B0H·IP 中斷優(yōu)先級控制 0B8H·IE 允許中斷控制 0A8HTMOD 定時器/計數器方式控制89H·TCON 定時器/計數器控制 88H+·T2CON 定時器/計數器 2 控制 0C8HTH0 定時器/計數器控制0(高位字節(jié))8CHTL0 定時器/計數器控制0(低位字節(jié))8AHTH1 定時器/計數器控制1(高位字節(jié))8DHTL1 定時器/計數器控制1(低位字節(jié))8BH電動式關節(jié)型機器人機械手的結構設計與仿真第 25 頁+TH2 定時器/計數器控制2(高位字節(jié))0CDH+TL2 定時器/計數器控制2(低位字節(jié))0CCH+RLDH 定時器/計數器控制 2自動再裝載(高位字節(jié))0CBH+RLDL 定時器/計數器控制 2自動再裝載(低位字節(jié))0CAH·SCON 串行控制 98HSBUF 串行數據緩沖器 99HPCON 電源控制 97H數據指針 DPTR(83H ,82H):數據指針 DPTR 是一個 16 位專用寄存器,其高位字節(jié)寄存器用 DPH 表示,低位字節(jié)寄存器用 DPL 表示。即可以作為 16位寄存器 DPTR 來處理,也可以作為 2 個獨立的 8 位寄存器 DPH 和 DPL 來處理 。 DPTR 主要用來保持 16 位地址,當 64KB 外部數據存儲空間尋址時,可作為間接寄存器用。這時有兩條傳送指令 MOVX A,@DPTR 和 MOVX @DPTR, A。在訪問程序存儲器時,DPTR 可用作基址寄存器,這時采用一條基址+變址尋址方式的指令 MOVC A,@+DPTR, 常用于讀取存放在程序存儲器內的表格數據。2)8031 的引腳功能8031 為 40 引腳芯片如圖 3-4,按其功能可分為三個部分:a. I/O 口線:P0,P1 ,P2,P3 共 4 個 8 位口。P0(雙向 I/O)口(39~32 腳):P0 口既可作地址/ 數據總線使用,又可作通用 I/O 口用。P1(準雙向 I/O)口(1~8 腳):P1 是一個帶內部上拉電阻的 8 位準電動式關節(jié)型機器人機械手的結構設計與仿真第 26 頁雙向 I/O 端口。P2(準雙向 I/O)口(21~28 腳):在結構上,P2 口比 P1 口多了一個輸出轉換控制部分。當轉換開關倒向左面時,P2 口作通用的 I/O 端口用,是一個準雙向口。P3(雙功能) (10~17 腳):P3 口是一個多用途的端口。b.控制信號引腳:PSEN(片外取指控制) ,ALE(地地鎖存控制) ,EA(片外存儲器選擇) ,RESET(復位控制) 。c.電源及時鐘: Vcc,Vss,XTAL1,XTAL2。其應用特性:a. I/O 口線不能都用作用戶 I/O 口線。b. I/O 口的驅動能力,P0 口可驅動 8 個 TTL 門電 路,P1、P2 、P3 則只能驅動 4 個 TTL 門。c. P3 口是雙重功能口,其功能如圖 3-5 所示。P3.0:RXD(串行輸入口);P3.1:TXD(串行輸出口);P3.2:INT0(外部中斷 0 輸入線);P3.3:INT1(外部中斷 1 輸入線);P3.4:T0(T0 外部記數脈沖輸入線);P3.5:T1(T1 外部記數脈沖輸入線);P3.6:WR(外部 RAM 寫選通脈沖輸出線);P3.7:RD(外部 RAM 讀選通脈沖輸出線)。電動式關節(jié)型機器人機械手的結構設計與仿真第 27 頁譯碼器采用 74LS138(8205) ,它具有以下特性:能作為 I/O 口或存儲器地址選擇器,擴充簡便,有輸入選擇端,采用了遵肖特基雙極型工藝,最大延遲為 18ns,連接與 TTL 邏輯電路兼容,低電平輸入負載電流最大為 0.25A,是標準TTL 輸入負載的 1/6。INTEL8205 譯碼器可以擴充那些輸入口、輸出口和帶有低電平有效的片選輸入存儲器件的系統(tǒng)。當 8205 被片選時,它的八個輸出端之一變“低” ,于是存儲器系統(tǒng)的一行被選中。對于擴大的系統(tǒng),可把 8205 級聯系起來,使得每一譯碼器能驅動 8 個譯碼器 ,可任意擴充存儲器。8205 的邏輯符號、引腳排列,選通和譯碼真值表如下:引腳說明:A0~A2 為選址輸入,E1~E3 為選通允許輸入(既片選) ,O0~O7 為譯碼輸出。8205 譯碼真值表如下:地址 選通允許 輸出A0 A1 A2 E1 E2 E3 0 1 2 3 4 5 6 7- - - - - + - + + + + + + +電動式關節(jié)型機器人機械手的結構設計與仿真第 28 頁+ - - - - + + - + + + + + +- + - - - + + + - + + + + ++ + - - - + + + + - + + + +- - + - - + + + + + - + + ++ - + - - + + + + + + - + +- + + - - + + + + + + + - ++ + + - - + + + + + + + + +地址 選通允許 輸出A0 A1 A2 E0 E1 E2 0 1 2 3 4 5 6 7× × × - - - + + + + + + + +× × × + - - + + + + + + + +× × × - + - + + + + + + + +× × × + + - + + + + + + + +× × × + - + + + + + + + + +× × × - + + + + + + + + + +× × × + + + + + + + + + + +鎖存器采用 74LS373:它的作用是把輸入信號鎖存起來,一直保持到選通信號來取出信息。其工作原理:當鎖存允許端為高電平時,Q 端跟隨 D 端變化;當鎖存允許由高變低時,將此變化前一瞬時輸入鎖存,此后輸入(D )不會影響輸出(Q)直至鎖存允許為高電平,E 是讀選通脈沖。應當注意在讀期間鎖存允許不能變化。鎖存允許信號通常取自譯碼器和 R/W 線,地址譯碼有時需 3到 15 級門延遲,來防止讀鎖存。數據存儲器采用 6264(8K×8) ,一共采用 3 塊 6264,故 RAM 為 24K,除了作為系統(tǒng)參數工作區(qū),標志單元外,主要用作用戶程序存儲區(qū),為了保存電動式關節(jié)型機器人機械手的結構設計與仿真第 29 頁RAM 的內容,一旦斷電,保證 RAM 中的用戶程序不會丟失,故采用電池利用CE2 引腳的掉電保護裝置在此也得到了應用,具體內容在后詳講,這里不再敘述。6264 靜態(tài) RAM 的技術性能為:一組三態(tài)輸出引腳作為輸入/輸出公共引腳,輸入/ 輸出與 TTL 電路兼容, A0~A12 為地址總線, I/O0~I/O7 為數據輸入/輸出,CE1 為片選 1,CE2 為片選 2,WE 為寫選通,OE 為讀選通。6264 引腳排列如下:EPROM 讀存儲器采用 2764(8K×8) ,一共 3 塊,達到 24 字節(jié),它的技術性能。存取速度快,功耗低,編程簡單,采用雙線控制,全靜態(tài)方式,采用單一+5V 電源。EPROM 一個很好的特點就是把輸出元件控制(OE )和片選控制(CE)分開,保證了其良好接口特性。對于 EPROM 的工作方式簡述說明如下:1).讀方式:EPROM 有兩種控制功能,兩者邏輯上部滿足能夠按次序在輸出方面獲得數據的要求。片選(CE)是電源控制方面,用于器件的選擇。輸出允許(OE )是輸出控制方面,用作數據到輸出引腳的選通信號,它與器件選擇無關。2).維持方式:在維持方式時,器件功耗從有效功耗減少到靜態(tài)維持功能。EPROM 時一個 TTL 高電平信號加到 CE 輸入端而建立維持方式的。當處于維持方式時,輸出端均為高阻狀態(tài)與 OE 輸入無關。 3).編程方式:2764 進入編程方式時,Vpp 在 12.5V 且 OE 和 PGM 都在 TTL 低電平、被編程的 8 位WE CE1CE2 OE方式 D0~D7× 高 × × 未選中高阻× × 低 × 未選中高阻高 低 高 高 禁止輸出高阻高 低 高 低 讀 D 輸出低 低 高 高 寫 D 輸入低 低 高 低 寫 D 輸入電動式關節(jié)型機器人機械手的結構設計與仿真第 30 頁數據以并行方式送到數據輸出引腳。地址和數據輸入所需電平都為 TTL。2764 的引腳圖:2.中斷處理電路本控制系統(tǒng)中采用 8259 中斷控制器來實現系統(tǒng)多重中斷的優(yōu)先排隊和中斷申請?zhí)幚怼?259 具有多中工作方式,可通過編程設定或變更它的工作方式。CPU 響應中斷時,8259A 能自動提供中斷入口地址,而使 CPU 轉問相應的中斷處理程序。中斷入口地址可由用戶設定,入口地址可以選定在任何存儲單元。8259A 的引腳,功能說明如下:在主機 2764(Ⅰ)的起始地址為0000H~1FFFH;2764(Ⅱ)的起始地址為2000H~3FFFH;2764(Ⅲ)的起始地址為4000H~5FFFH;6264(Ⅰ)的起始地址為6000H~7FFFH;6264(Ⅱ)的起始地址為8000H~9FFFH;6264(Ⅲ)的起始地址為8000H~9FFFH;在示教盒中, 2764 的起始地址為 0000H~1FFFH;電動式關節(jié)型機器人機械手的結構設計與仿真第 31 頁(1).數據總線緩沖器:是三態(tài),雙向 8 位緩沖器,外部引腳 D0~D7用于和 CPU 的數據總線相連, CPU 通過數據緩沖器向 8259A 傳送命令碼,成從 8259A 讀聯狀態(tài)字。在中斷響應時,8259 通過數據總線緩沖器問 CPU 提供CALL 指令的操作碼(11001101)和調用子程序入口地址高 8 位和低 8 位。(2).中斷申請寄存器(IRR):用來寄存所有從中斷申請輸入線(IR0~IR7)輸入的中斷申請信號,當 IR0~IR7 中任何一條申請線上開為高電平時,IRR 中相應的位置位。(3).優(yōu)先級分辨器(PR):用于確定中斷申請寄存器( IRR)中個中斷申請位的優(yōu)先級。IR0~IR7 的優(yōu)先級可由 CPU 編程設定。(4).控制邏輯根據 CPU 對 8259 編程設定的工作方式產生 8259A 控制信號,并在適當的時候對 CPU 發(fā)生中斷申請信號 INT 請求 CPU 響應。INTA是來自 CPU 的中斷響應信號。當 CPU 進入中斷響應周期,送來第一個 INTA脈沖時,8259 的控制邏輯一方面把 CALL 指令操作碼( 11001101)經 D0~D7送上數據線供 CPU 讀入指令寄存器。另一方面又把優(yōu)先級分辨器從 IRR 中選CS 片選WR 寫RD 讀CAS0~CAS2級聯線SP/EN從片/開啟緩沖器INT 中斷IR0~IR7 中斷請求INTA中斷響應A0 地址線電動式關節(jié)型機器人機械手的結構設計與仿真第 32 頁出的具有最高優(yōu)先級的中斷中請存入服務狀態(tài)寄存器(ISR) 。以確定對應的服務程序入口地址,CPU 在讀到 CALL 指令操作碼后,由于這是一條 3 字節(jié)指令,因此繼續(xù)發(fā)來兩個 INTA 的脈沖信號,在第二個 INTA 脈沖到來時,控制邏輯把被響應的中斷申請所對應的服務程序入口地址的低 8 位送上數據總線,當第三個 INAT 脈沖到來時,則提供服務的程序入口地址高 8 位,然后 CPU 執(zhí)行調用指令 CALL,轉到相應的服務程序入口地址。在中斷服務結束, CPU 送來的中斷結束(EOL )和特殊中斷結束( SEOL)命令碼時,控制邏輯服務狀態(tài)寄存器中的 IS 位復位。(3).讀、寫邏輯暈高來接受 CPU 的控制信號,使來自 CPU 的初始化命令字(ZCW )和操作命令字(OCW)存入 8259A 內部相應的寄存器中,用以規(guī)定 8259 的工作方式,也 CPU 讀取 8259A 內部狀態(tài)信息,有關引腳功能如下:CS:片選線。當 CS=0 時,8259A 被選中,允許 CPU 對 8259A 進行讀、寫操作。WR:寫信號。當 WR=0 時允許 CPU 把命令字(ICW 和 OCW)寫入8259。RD:讀信號 RD=0 時,允許 8259A 將中斷申請寄存器(IRR ) ,服務狀態(tài)寄存器(ISR ) ,中斷屏蔽寄存器( IMR)和中斷級的 BCD 碼送上數據總線供CPU 讀取。A0:地址線。這個輸入信號同 WR、RD 信號一起用來確定命令所需寫入的各種命令寄存器?;蛑付?CPU 要讀出的狀態(tài)信息寄存器。(4).級聯緩沖器/比較器:當 8259A 為主器件時(SP=1) ,CAS0~CAS2 為輸出線,在 CPU 響應中斷時,用來表示級聯代碼,選出申請中斷的從器件,這是被選的從器件將在下兩個接連出現的 INTA 脈沖期間,把預先編好的中斷服務程序入口地址代送上數據總線。當 8259A 為從器件時(SP=0) ,CAS0~CAS2 為輸入線,接收主器件送來的選擇代碼。8259A 的操作控制和工作原理:a.A0、WR 、RD、CS 的控制作用,表 3-2 表示了在控制引腳不同的電電動式關節(jié)型機器人機械手的結構設計與仿真第 33 頁平狀態(tài)下的操作控制狀態(tài)。表 A0、WR、RD、CS 的控制作用A0 D4 D3 RDWRCS輸出操作0 0 1 0 IRR、 ISR 或中斷級 BCD 碼數據總線1 0 1 0 IMR 數據總線輸入操作0 0 0 1 0 0 數據總線 OCW2 寄存器0 0 1 1 0 0 數據總線 OCW3 寄存器0 1 × 1 0 0 數據總線 ICW11 × × 1 0 0 數據總線 OCW1,ICW2,ICW3對 IRRISR 或中斷級的 BCD 碼的選擇,決定于在此讀出操作之前,CPU 寫入的操作命令 OCW3 的內容。這寫命令的輸入順序由芯片的時序邏輯以適當的時序加以排列。8259A 的工作過程及中斷應答時序:8259 按下列順序管理外圍設備的中斷申請:(1)當在 IR0~IR7 的中斷申請輸入端上由一個或多個輸入出現高電平時,IRR 中的個對應為被置 1,表明已經由外圍設備提出中斷申請。(2)8259A 在接受這些中斷申請,并分辨優(yōu)先級的同時,向 CPU 發(fā)出電動式關節(jié)型機器人機械手的結構設計與仿真第 34 頁INT 脈沖作為應答。(3)若 CPU 處于“中斷允許”的情況下,在收到 INTA 信號后應向8259A 發(fā)出 INTA 脈沖作為應答。(4)當 8259A 接收來自 CPU 的第一個脈沖(INTA)時,便使 ISR 的最高優(yōu)先級相應位置 1,而將 IRR 中于之對應的位置 0,并送一條 CALL 指令碼(11001101)至數據總線。(5)當 CPU 讀到這個 CALL 指令后便發(fā)出兩個 INTA 脈沖至 8259A。(6)這后兩個 INTA 脈沖促使 8259 把一個預先編程的 16 位地址傳到數據總線上(分兩次送出,先低 8 位后高位) 。這個地址就是中斷服務程序的入口地址。(7)當執(zhí)行完上述的 3 字節(jié)調用指令后,便轉移至執(zhí)行外設中斷服務子程序。在子程序執(zhí)行期間,其相應的 ISR 位一直保持位 1,只有在子程序的末尾,在 8259A 收到一個 EOL(中斷結束)命令時,才使相應的 ISR 復位。中斷應答時序如圖所示:8259 的編程與命令控制字:8259 編程時,要設定初始化命令字 ICW 和操作命令字 OCW。在 8259 啟動之前,必須送入 2~4 個字節(jié)的 ICW1、ICW2 用來設置中斷服務程序的 16 位入口地址。ICW 的 D4 位時特征位,當 D4=1,且A0=0 時,8259 就會識別出它時初始化命令字 ICW1,將其存入相當的寄存器,并啟動初始化時序。在初始化命令字進入 8259A 之后, 8259A 就準備好接收來自 IR 輸入線的中斷申請信號。但是,在 8259A 工作期間 CPU 可以通過操作命令 OCW 命令 8259A 完成不同方式的操作。8259A 共有三種操作命令字:IRINTINTADB電動式關節(jié)型機器人機械手的結構設計與仿真第 35 頁OCW1、OCW2、OCW3 ,這三個操作命令字是依靠 A0 和 OCW 中的 D4、D3特征位來區(qū)別的。OCW 命令字可在初始化后的任何時刻寫入,下面分別介紹在不同的操作命令字的控制下 8259A 的工作方式:( 1)無 OCW 的操作方式。在完成初始化程序命令送入后,如果沒有任何 OCW 操作命令字寫入,則 8259A以全嵌套的操作方式響應來自 IR 輸入線的中斷申請信號,中斷申請的優(yōu)先級被定位 IR0~IR7(IR0 的優(yōu)先級最高) 。當中斷被響應時,中斷申請寄存器 IRR 中優(yōu)先級最高的申請信號被選出,并被存入服務狀態(tài)寄存器,ISR 相應的 IS 位(IS0~IS7)被置位。在 CPU 有服務程序返回之前,保持置位直到 CPU 發(fā)出一個中斷結束命令(EOL )為止。 (2)OCW1 的操作方式: CPU 可以通過操作命令字 OCW1 來分別屏蔽每一個中斷申請。OCW1 的格式如圖:當 Mn=1 則相應的 IRn 被屏蔽OCW1(3)OCW2 的操作方式:OCW2 操作命令字用于控制 8259A 的循環(huán)優(yōu)先方式和中斷結束,OCW2 中的 R 位用來設定循環(huán)優(yōu)先方式。當 R=0 時,8259A 以不循環(huán)的優(yōu)先方式操作。IR0~IR7 的優(yōu)先權時固定的。當 R=1 時,8259A 被設定以循環(huán)優(yōu)先方式操作。 (4)OCW3 的操作方式:操作命令字 OCW3 用來設定特殊屏蔽方式和指定將要讀出的寄存器。3.8279 鍵盤、顯示8279 芯片是一種通用的可編程序的鍵盤、顯示接口器件,單個芯片就能完成鍵盤輸入和 LED 顯示控制兩種功能,鍵盤部分提供的掃描方式,可以和具有64 個按鍵成傳感器的陣列相連,能自動消除開關抖動以及 n 鍵同時按下的保護。顯示部分按掃描方式工作,可以顯示 8 或 16 位 LED 顯示塊。中斷屏蔽1=設置屏蔽2=清除屏蔽1 M7 M6 M5 M4 M3 M2 M1 M0電動式關節(jié)型機器人機械手的結構設計與仿真第 36 頁8279 電路工作原理如下:(1).I/O 控制及數據緩沖器,數據緩沖器是雙向緩沖器,連接內、外總線,用于傳送 CPU 和 8279 之間的命令或數據。I/O 控制線是 CPU 對 8279 進行控制的引線。CS 是 8279 的片選信號,當 CS=0 時,8279 才被允許讀出或寫入信息。
收藏