2019-2020年人教A版高中數(shù)學(xué) 高三一輪(文) 第九章 9-2古典概型《教案》.doc
《2019-2020年人教A版高中數(shù)學(xué) 高三一輪(文) 第九章 9-2古典概型《教案》.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年人教A版高中數(shù)學(xué) 高三一輪(文) 第九章 9-2古典概型《教案》.doc(14頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教A版高中數(shù)學(xué) 高三一輪(文) 第九章 9-2古典概型《教案》 1.基本事件的特點(diǎn) (1)任何兩個(gè)基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下兩個(gè)特點(diǎn)的概率模型稱為古典概率模型,簡稱古典概型. (1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè); (2)每個(gè)基本事件的發(fā)生都是等可能的. 3.如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有n個(gè),而且所有結(jié)果出現(xiàn)的可能性都相等,那么每一個(gè)基本事件的概率都是 ;如果某個(gè)事件A包括的結(jié)果有m個(gè),那么事件A的概率P(A)= . 4.古典概型的概率公式 P(A)=. 【思考辨析】 判斷下面結(jié)論是否正確(請?jiān)诶ㄌ?hào)中打“√”或“”) (1)“在適宜條件下,種下一粒種子觀察它是否發(fā)芽”屬于古典概型,其基本事件是“發(fā)芽與不發(fā)芽”.( ) (2)擲一枚硬幣兩次,出現(xiàn)“兩個(gè)正面”“一正一反”“兩個(gè)反面”,這三個(gè)結(jié)果是等可能事件.( ) (3)從市場上出售的標(biāo)準(zhǔn)為5005 g的袋裝食鹽中任取一袋,測其重量,屬于古典概型.( ) (4)有3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組的可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為.( √ ) (5)從1,2,3,4,5中任取出兩個(gè)不同的數(shù),其和為5的概率是0.2.( √ ) (6)在古典概型中,如果事件A中基本事件構(gòu)成集合A,且集合A中的元素個(gè)數(shù)為n,所有的基本事件構(gòu)成集合I,且集合I中元素個(gè)數(shù)為m,則事件A的概率為.( √ ) 1.一枚硬幣連擲2次,只有一次出現(xiàn)正面的概率為________. 答案 解析 一枚硬幣連擲2次,共有4種不同的結(jié)果: 正正,正反,反正,反反, 所以一次出現(xiàn)正面的概率為=. 2.袋中裝有6個(gè)白球,5個(gè)黃球,4個(gè)紅球,從中任取一球抽到白球的概率為________. 答案 解析 從15個(gè)球中任取一球有15種抽法,抽到白球有6種,所以抽到白球的概率P==. 3.(xx重慶)若甲、乙、丙三人隨機(jī)地站成一排,則甲、乙兩人相鄰而站的概率為________. 答案 解析 甲、乙、丙三人隨機(jī)地站成一排,共有甲、乙、丙,甲、丙、乙,乙、甲、丙,乙、丙、甲,丙、甲、乙,丙、乙、甲共6種排法,其中甲、乙兩人相鄰而站共甲、乙、丙,乙、甲、丙,丙、甲、乙,丙、乙、甲4種排法,故P==. 4.從1,2,3,4,5,6這6個(gè)數(shù)字中,任取2個(gè)數(shù)字相加,其和為偶數(shù)的概率是________. 答案 解析 從6個(gè)數(shù)中任取2個(gè)數(shù)的可能情況有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15種,其中和為偶數(shù)的情況有(1,3),(1,5),(2,4),(2,6),(3,5),(4,6),共6種,所以所求的概率是. 題型一 基本事件與古典概型的判斷 例1 袋中有大小相同的5個(gè)白球,3個(gè)黑球和3個(gè)紅球,每球有一個(gè)區(qū)別于其他球的編號(hào),從中摸出一個(gè)球. (1)有多少種不同的摸法?如果把每個(gè)球的編號(hào)看作一個(gè)基本事件建立概率模型,該模型是不是古典概型? (2)若按球的顏色為劃分基本事件的依據(jù),有多少個(gè)基本事件?以這些基本事件建立概率模型,該模型是不是古典概型? 思維點(diǎn)撥 古典概型的判斷依據(jù)是“有限性”和“等可能性”. 解 (1)由于共有11個(gè)球,且每個(gè)球有不同的編號(hào),故共有11種不同的摸法. 又因?yàn)樗星虼笮∠嗤?,因此每個(gè)球被摸中的可能性相等, 故以球的編號(hào)為基本事件的概率模型為古典概型. (2)由于11個(gè)球共有3種顏色,因此共有3個(gè)基本事件,分別記為A:“摸到白球”,B:“摸到黑球”,C:“摸到紅球”, 又因?yàn)樗星虼笮∠嗤?,所以一次摸球每個(gè)球被摸中的可能性均為,而白球有5個(gè), 故一次摸球摸到白球的可能性為, 同理可知摸到黑球、紅球的可能性均為, 顯然這三個(gè)基本事件出現(xiàn)的可能性不相等, 所以以顏色為劃分基本事件的依據(jù)的概率模型不是古典概型. 思維升華 一個(gè)試驗(yàn)是否為古典概型,在于這個(gè)試驗(yàn)是否具有古典概型的兩個(gè)特點(diǎn)——有限性和等可能性,只有同時(shí)具備這兩個(gè)特點(diǎn)的概型才是古典概型. 下列試驗(yàn)中,是古典概型的個(gè)數(shù)為__________________________________. ①向上拋一枚質(zhì)地不均勻的硬幣,觀察正面向上的概率; ②向正方形ABCD內(nèi),任意拋擲一點(diǎn)P,點(diǎn)P恰與點(diǎn)C重合; ③從1,2,3,4四個(gè)數(shù)中,任取兩個(gè)數(shù),求所取兩數(shù)之一是2的概率; ④在線段[0,5]上任取一點(diǎn),求此點(diǎn)小于2的概率. 答案 1 解析 ①中,硬幣質(zhì)地不均勻,不是等可能事件, 所以不是古典概型. ②④的基本事件都不是有限個(gè),不是古典概型. ③符合古典概型的特點(diǎn),是古典概型問題. 題型二 古典概型的概率 例2 (xx山東)某小組共有A,B,C,D,E五位同學(xué),他們的身高(單位:米)及體重指標(biāo)(單位:千克/米2)如下表所示: A B C D E 身高 1.69 1.73 1.75 1.79 1.82 體重指標(biāo) 19.2 25.1 18.5 23.3 20.9 (1)從該小組身高低于1.80的同學(xué)中任選2人,求選到的2人身高都在1.78以下的概率; (2)從該小組同學(xué)中任選2人,求選到的2人的身高都在1.70以上且體重指標(biāo)都在[18.5,23.9)中的概率. 思維點(diǎn)撥 列舉出基本事件. 解 (1)從身高低于1.80的4名同學(xué)中任選2人,其一切可能的結(jié)果組成的基本事件有(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6個(gè).設(shè)“選到的2人身高都在1.78以下”為事件M,其包括事件有3個(gè), 故P(M)==. (2)從小組5名同學(xué)中任選2人,其一切可能的結(jié)果組成的基本事件有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10個(gè). 設(shè)“選到的2人的身高都在1.70以上且體重指標(biāo)都在[18.5,23.9)”為事件N,且事件N包括事件有(C,D),(C,E),(D,E)共3個(gè). 則P(N)=. 思維升華 求古典概型的概率的關(guān)鍵是求試驗(yàn)的基本事件的總數(shù)和事件A包含的基本事件的個(gè)數(shù),這就需要正確列出基本事件.基本事件的表示方法有列舉法、列表法和樹形圖法,具體應(yīng)用時(shí)可根據(jù)需要靈活選擇. (xx天津)某校夏令營有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級(jí)情況如下表: 一年級(jí) 二年級(jí) 三年級(jí) 男同學(xué) A B C 女同學(xué) X Y Z 現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競賽(每人被選到的可能性相同). (1)用表中字母列舉出所有可能的結(jié)果; (2)設(shè)M為事件“選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率. 解 (1)從6名同學(xué)中隨機(jī)選出2人參加知識(shí)競賽的所有可能結(jié)果為{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15種. (2)選出的2人來自在不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)的所有可能結(jié)果為{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6種. 因此,事件M發(fā)生的概率P(M)==. 題型三 古典概型與統(tǒng)計(jì)的綜合應(yīng)用 例3 (xx陜西)有7位歌手(1至7號(hào))參加一場歌唱比賽,由500名大眾評(píng)委現(xiàn)場投票決定歌手名次,根據(jù)年齡將大眾評(píng)委分為五組,各組的人數(shù)如下: 組別 A B C D E 人數(shù) 50 100 150 150 50 (1)為了調(diào)查評(píng)委對7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干評(píng)委,其中從B組中抽取了6人.請將其余各組抽取的人數(shù)填入下表. 組別 A B C D E 人數(shù) 50 100 150 150 50 抽取人數(shù) 6 (2)在(1)中,若A,B兩組被抽到的評(píng)委中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率. 思維點(diǎn)撥 各組抽取人數(shù)的比率是相等的,因此,由B組抽取的比率可求得其它各組抽取的人數(shù). 解 (1)由題設(shè)知,分層抽樣的抽取比例為6%,所以各組抽取的人數(shù)如下表: 組別 A B C D E 人數(shù) 50 100 150 150 50 抽取人數(shù) 3 6 9 9 3 (2)記從A組抽到的3個(gè)評(píng)委為a1,a2,a3,其中a1,a2支持1號(hào)歌手;從B組抽到的6個(gè)評(píng)委為b1,b2,b3,b4,b5,b6,其中b1,b2支持1號(hào)歌手.從{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有結(jié)果為 由以上樹狀圖知所有結(jié)果共18種,其中2人都支持1號(hào)歌手的有a1b1,a1b2,a2b1,a2b2共4種, 故所求概率P==. 思維升華 有關(guān)古典概型與統(tǒng)計(jì)結(jié)合的題型是高考考查概率的一個(gè)重要題型,已成為高考考查的熱點(diǎn).概率與統(tǒng)計(jì)結(jié)合題,無論是直接描述還是利用頻率分布表、頻率分布直方圖、莖葉圖等給出信息,只需要能夠從題中提煉出需要的信息,則此類問題即可解決. (xx湖南)某企業(yè)有甲、乙兩個(gè)研發(fā)小組.為了比較他們的研發(fā)水平,現(xiàn)隨機(jī)抽取這兩個(gè)小組往年研發(fā)新產(chǎn)品的結(jié)果如下: (a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b),(a,b). 其中a,分別表示甲組研發(fā)成功和失??;b,分別表示乙組研發(fā)成功和失敗. (1)若某組成功研發(fā)一種新產(chǎn)品,則給該組記1分,否則記0分.試計(jì)算甲、乙兩組研發(fā)新產(chǎn)品的成績的平均數(shù)和方差,并比較甲、乙兩組的研發(fā)水平; (2)若該企業(yè)安排甲、乙兩組各自研發(fā)一種新產(chǎn)品,試估計(jì)恰有一組研發(fā)成功的概率. 解 (1)甲組研發(fā)新產(chǎn)品的成績?yōu)? 1,1,1,0,0,1,1,1,0,1,0,1,1,0,1, 其平均數(shù)為 甲==; 方差為 s==. 乙組研發(fā)新產(chǎn)品的成績?yōu)? 1,0,1,1,0,1,1,0,1,0,0,1,0,1,1, 其平均數(shù)為 乙==; 方差為 s==. 因?yàn)榧?乙,s- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 教案 2019-2020年人教A版高中數(shù)學(xué) 高三一輪文 第九章 9-2古典概型教案 2019 2020 年人教 高中數(shù)學(xué) 一輪 第九 古典
鏈接地址:http://m.zhongcaozhi.com.cn/p-6166439.html