購買設(shè)計(jì)請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
南昌航空大學(xué)科技學(xué)院學(xué)士學(xué)位論文
Study and Design no Automation Control System of the Thermal Power Unit from the System Point of view.
(1. Nanjing University of Aeronautics and Astronautics ,Nanjing 210016 China)
(2. Taiyuan University of Technology ,Taiyuan 030024 China)
Abstract: From the system point of view, the feature of the thermal power unit and the demand on its control system are analyzed and research in details in this paper. The character that the boils and the steam turbine are a whole of relative independence is fully considered. By coordinate control, the purpose of the optimal whole operating effect of the system is realize adopting the key techniques of communication, computer and intelligent information process etc.... The adaptation and whole property of the system is emerged by interaction and coordination between subsystems.
1 Introduction
The system is an organic whole certain structure and function ,which consists of several element with interrelation , interdependence and interplay .The thermal power unit is a typical system ,composed of generator ,steam turbine ,boiler and many anxiliary equipment .Its main function is to produce the power load according to power network requirement .System engineering is the science used to study and design the complex system .In the meantime, It is also the theory and method used to deal with systems in term of definite aim in order to achieve the optimal whole of the system .From the system point of view, the coordinate control system of the thermal power unit has been studied and designed in this paper .
2 Study and Design on Automation Control System of the Thermal Power unit from the System Point of View
2.1 Function of Automation Control System of the Power unit
At first the thermal power unit as the controlled object is deeply studied before its automation control system is studied and designed .The thermal power unit is a huge group of equipments ,which is composed of generator, ,steam turbine ,boiler and many auxiliary equipments. Its process flow is complex and pipelines intervenient .Especially the large-scale power unit is a typical coupling ,nonlinear ,varying complex controlled object with multi-input and multi-output .Thousands of parameters are measured ,operated and controlled .The character of object is changeful because of many different operating modes and switch relation .With enlarging of industry production scale and the raising of people’s living standard ,the required quantity of power energy is increasing and the difference of apex and vale of power load is increasing .So the new and higher require is put forward for automation control system of the power unit .
(1.)Load control :Along with the increase of the unit capacity ,early load control mode of “boiler follows steam turbine ”or “steam turbine follows boiler ” has not already satisfied the requirements so we must adopt more suitable load control scheme ,which is the unit coordinate control .
(2.)Reliability: The design of system must be reliable, ensuring safe and economic operation of the unit .In addition, The tolerance fault, redundant technology ,self-diagnosis of software and hardware must be adopted to improve the reliability of system .
(3.)Communication and man-machine interface: Because there are many parameters need to be measured and controlled and its varying speed is quick when the large scale unit is running , communication system must have quick real-time response and high reliability ;man-machine interface must be good at the operator station including operating terminal and large-area display that provides synthetic menus and information about the whole production process for the operators.
2.2 Structure of Automation Control system of the power unit
The design of automation control system of thermal power unit mainly includes control, alarm monitor, protect etc . In accordance with the above analysis .So we divide the complex system into several subsystems in order to make the whole system optimal .
(1.)Data acquisition system(DAS):It is information center of whole system and provides credible rapid objective operating records ,which is the base of safe and economical operating of equipments .Function of ,print of accident list and incident review ,property calculate ,operate guidance etc…
(2)Boiler control system :Boiler control system such as boiler combustion ,steam temperature ,feedwater ,auxiliary control system and the boiler safe supervisory system and boiler combustion management system. There subsystem coordinate each other and make boiler operate in safe ,efficient and steady state to satisfy the load instruction of power network in various operating modes .
(3.)Steam turbine control system :Steam turbine control system realizes load control and rotative velocity control of steam turbine by DEH (Digital Electro-Hydraulic ).In addition ,the auxiliary system of steam turbine include the deoxygenation water lever control ,deoxygenation pressure control ,the condenser hot well water level control and the heater water lever control etc
(4.)Auxiliary system :Besides the main systems mentioned above ,the auxiliary system also has by-pass control system etc…
The main system and auxiliary system are a organic whole through close connection of information communication network .They are inter-permeable and .Inter-dependent so as to form the main part of the automation control system of the large-scale unit.
2.3 Design of Automation Control System of the Thermal Power Unit
From the system point of view, we analyze and study the principle of two basic feedback control method early that “boiler follows steam turbine” and “steam turbine follows boiler” in order to find out the existent problem ad be able to design more reasonable control method.
2.3.1 Boiler follows steam turbine mode
This kind of control mode is first to let steam turbine trail the needs of power network load ,then let boiler trail steam turbine .Its advantage is to be able to fully use the heat accumulation of boiler ,make the unit meet the change of power network load comparatively quickly.. But because the inertia and delay of boiler are greater ,the regulation of former turbine pressure pt cannot follow the speed of load regulation, thus pt has greater fluctuation, which is disadvantageous to the steady operation of boiler .The range and speed change of the unit’s output must be restricted .
2.3.2. Steam turbine follows boiler mode
This kind of control mode is first to let boiler train the needs of power network load, then let steam turbine train boiler .It can be better to maintain steam pressure stabilize and beneficial to boiler steady operation .But it do not fully utilize the heat accumulation f boiler to regulate the unit’s output ,it is more slowly that the unit meets the load’s demand ,so this control mode is only to be applied to the unit undertaking basic load .
2.3.3 Coordinate control mod
According to the analysis above, it must use the heat accumulation of boiler fully and reasonably when the unit has better adaptability to power network load in safe operation. That is to let former turbine pressure changes, then to coordinate the interaction between two loops of power regulation and pressure regulation reasonably, so that unit's output meets the needs of the power network load promptly, and guarantee the control demand of unit steady operation. The practical method is to lead into properly feedforward control systems mentioned above and make boiler and steam turbine coordinate each other so that the schemes of various coordinate controls suitable to practical project can be attained, such as: coordinate control system based on“ boiler follows steam turbine” or“ steam turbine follows boiler”。
2.3.3.1. Basic function of coordinate control system.
Coordinate control system of the thermal power unit should usually have following function:(l) select different load instruction according to the unit operating condition and the requirement of power network for the unit.(2) restrict the change rate of load instruction.(3). Calculate the biggest possible output of the unit and restrict the biggest and minimum amplitude of load.(4). Have the function of RUNBACK.(5). Select different running mode according to the unit operating condition.(6). Calculate actual unit output.(7). Let automation control system have enough steady abundant quantity and better wholeness.(8). Have necessary safe measures such as starting by-pass system and preventing steam turbine from exceeding the speed limit etc…, when the unit and power network unite suddenly because of accident.
2.3.3.2 Basic composition of coordinate control system of the unit.
Now the coordinate control system of the unit is composed of two parts, which are load instruction process and coordinate control of boiler and steam turbine, shown as fig.1.
Fig.1 Unit Coordinate Control System
In which, load instruction process is composed of unit calculation loop, unit Allowed load calculation loop and load restriction loop. Coordinate and steam turbine controller.
2.3.3.3. Implementation of coordinate control system of the thermal power unit Modern large-scale thermal power unit adopts distributed control system to realize the unit automation control that guarantees safe economic operation of the unit. TEKEPERM-ME of SIEMENS is chosen to realize coordinate control system of the thermal power unit including several parts shown as Fig.2.
Fig 2 Implementation diagram of unit coordinate control system
When each subsystem of the unit normally run, start the mode of coordinate control mode. In this mode , steam turbine and boiler accept load instruction in parallel. Boiler maintains main steam pressure through changing combustion rate, and steam turbine pressure and set value. When the deviation of former turbine pressure and set value exceeds certain limit value, open degree instruction of steam value given by steam turbine main control loop is restricted, up to this deviation within the pressure control scope of the boiler.
3. Conclusion.
In one word, from the system point of view, the automation control system of the thermal power unit is divided into several subsystems as well as the design and implementation of unit coordinate control system is demonstrated in this paper. The large scale unit coordinate control has faster trailing performance and better stability and robustness. The purpose of the optimal whole operation effect of the unit is realized by coordinate the subsystems.
Reference
[1]Xiong Shuyan , Wangxingye ,Tianyan .Distributed Control System of thermal power plant ,Scientific Press .
Beijing P.R China ,20003
[2] Zhong xinyuan .Application of DEB Coordinated Control System in Thermal power plants ,electric power Science And Engineering ,2003(3):50-53.
Author Biographies
Jianyan Tian , associate professor ,is a Doctoral student in Nanjing University of Aeronautics and Astronautics .Her research is aimed at intelligent control ,System Engineering and Grey System theory .
Lizhen pan is a student for Master Degree in 2002 .Her research is aimed at intelligent control theory and its application.
研究與設(shè)計(jì)沒有自動化控制系統(tǒng)從系統(tǒng)的角度對火電機(jī)組
(1.南京航空航天大學(xué),南京210016中國)
(2.太原理工大學(xué),太原030024中國)
摘要:從系統(tǒng)的角度,對火電機(jī)組,并在其控制系統(tǒng)的需求特點(diǎn)進(jìn)行了分析和研究在文中詳細(xì)介紹。在沸騰的字符和蒸汽渦輪機(jī)是一種相對獨(dú)立整體充分考慮。通過坐標(biāo)控制,該系統(tǒng)的最優(yōu)整體運(yùn)行效果的目的,是實(shí)現(xiàn)采用通信,計(jì)算機(jī)和智能信息處理等關(guān)鍵技術(shù)...該系統(tǒng)的適應(yīng)和整體物業(yè)應(yīng)運(yùn)而生子系統(tǒng)之間的相互作用和協(xié)調(diào)。
1簡介
該系統(tǒng)是一個(gè)有機(jī)的整體一定的結(jié)構(gòu)和功能,這與相互聯(lián)系,相互依存和相互幾個(gè)元素組成。火電機(jī)組是一個(gè)典型的系統(tǒng),發(fā)電機(jī),汽輪機(jī),鍋爐,許多anxiliary設(shè)備組成。它的主要功能是根據(jù)生產(chǎn)的電力負(fù)荷對電網(wǎng)的要求。系統(tǒng)工程來研究和設(shè)計(jì)復(fù)雜系統(tǒng)的科學(xué)。與此同時(shí),這也是理論和方法用于明確的目標(biāo),在長期的系統(tǒng)的處理,以達(dá)到優(yōu)化整個(gè)系統(tǒng)從系統(tǒng)的角度的。,坐標(biāo)控制火電機(jī)組系統(tǒng)進(jìn)行了研究,本文設(shè)計(jì)。
2研究與設(shè)計(jì)自動化控制系統(tǒng)的火電機(jī)組從系統(tǒng)的角度
2.1自動化控制系統(tǒng)功能的功率單元
起初,火電機(jī)組的控制對象是在深入研究其自動化控制系統(tǒng)進(jìn)行了研究和設(shè)計(jì)?;痣姍C(jī)組是一組龐大的設(shè)備,這是發(fā)電機(jī),汽輪機(jī),鍋爐,許多輔助設(shè)備組成。其工藝流程復(fù)雜,管道的干預(yù)。特別是大型動力裝置是一個(gè)典型的耦合,非線性,變復(fù)雜的多輸入多輸出。成千上萬被控對象的參數(shù)的測量,操作和控制。性格的對象是因?yàn)樵S多不同的操作模式和開關(guān)的關(guān)系多變。憑借多年的行業(yè)生產(chǎn)規(guī)模和人民生活水平,電力能源需要的數(shù)量正在增加提高和頂點(diǎn),電力負(fù)荷低谷差別擴(kuò)大正在增加。因此,新的并提出了更高的要求為動力裝置自動化控制系統(tǒng)。
(1) 負(fù)荷控制:隨著機(jī)組容量的增加,早期負(fù)荷控制模式“如下汽輪機(jī)鍋爐“或“蒸汽鍋爐渦輪如下:“還沒有滿足的要求,所以我們必須采取更合適的負(fù)荷控制方案,這是單位協(xié)調(diào)控制。
(2) 可靠性:系統(tǒng)設(shè)計(jì)必須是可靠的,確保安全和經(jīng)濟(jì)單元操作此外,公差故障,冗余技術(shù),自診斷軟件和硬件必須通過提高系統(tǒng)的可靠性。
(3) 通信和人機(jī)接口:由于有許多參數(shù)需要測量和控制,其變化速度快,當(dāng)大型機(jī)組正在運(yùn)行,通信系統(tǒng)必須具有快速的實(shí)時(shí)響應(yīng)和高可靠性,人機(jī)接口必須在操作員站包括操作終端和大面積顯示屏,能夠提供綜合的菜單和有關(guān)的營辦商的整個(gè)生產(chǎn)過程信息的好。
2.2結(jié)構(gòu)的自動化控制系統(tǒng)的動力裝置
對火電機(jī)組自動化控制系統(tǒng)的設(shè)計(jì)主要包括控制,報(bào)警監(jiān)控,保護(hù)等。與上述分析相吻合。因此,我們分成幾個(gè)子系統(tǒng)的復(fù)雜系統(tǒng),以便使整個(gè)系統(tǒng)的優(yōu)化。
(1) 數(shù)據(jù)采集??系統(tǒng)(DAS):。這是整個(gè)信息系統(tǒng)的中心目標(biāo),并提供快速可靠的運(yùn)行記錄,這是設(shè)備的安全運(yùn)行和經(jīng)濟(jì)基礎(chǔ)的作用,事故和事故征候的審查清單打印,物業(yè)計(jì)算,操作指導(dǎo)等等...
(2) 鍋爐控制系統(tǒng):如鍋爐燃燒鍋爐,蒸汽溫度,給水,輔助控制系統(tǒng)和鍋爐的安全監(jiān)控系統(tǒng)和鍋爐燃燒管理系統(tǒng)控制系統(tǒng)。有子系統(tǒng)相互協(xié)調(diào),使鍋爐運(yùn)行在安全,高效,穩(wěn)定的狀態(tài),以滿足各種運(yùn)行模式的電網(wǎng)負(fù)荷指令。
(3) 汽輪機(jī)控制系統(tǒng):控制系統(tǒng)實(shí)現(xiàn)了汽輪機(jī)負(fù)荷控制和DEH系統(tǒng)的蒸汽渦輪機(jī)(數(shù)字電液)轉(zhuǎn)速控制此外,汽輪機(jī)輔助系統(tǒng)包括除氧水位控制,除氧壓力控制,冷凝器。熱井水位控制和加熱器水位控制等
(4) 輔助系統(tǒng):除上述主要系統(tǒng),輔助系統(tǒng)還具有旁路控制系統(tǒng)等...
主系統(tǒng)和輔助系統(tǒng)是通過信息通信網(wǎng)絡(luò)緊密聯(lián)系的有機(jī)整體。它們是互相滲透和。相互依存的,從而形成了大型機(jī)組自動化控制系統(tǒng)的主要組成部分。
2.3設(shè)計(jì)自動化的火電機(jī)組控制系統(tǒng)
從系統(tǒng)的角度,分析和研究反饋控制的兩種基本方法的原理早,“鍋爐如下汽輪機(jī)“和”汽輪機(jī)如下鍋爐“,以找出存在的問題,廣告能夠設(shè)計(jì)出更合理的控制方法。
2.3.1鍋爐蒸汽渦輪機(jī)模式如下
這種控制模式,就是第一個(gè)能夠讓汽輪機(jī)徑電網(wǎng)負(fù)荷的需求,然后讓鍋爐汽輪機(jī)線索。它的優(yōu)點(diǎn)是能夠充分利用鍋爐的熱積累,使該單位滿足電網(wǎng)變化負(fù)載較快..但由于慣性和鍋爐比較大的延遲,前渦輪壓力角監(jiān)管不能跟隨負(fù)荷調(diào)節(jié)速度,從而PT有較大的波動,這不利于鍋爐的穩(wěn)定運(yùn)行。范圍和速度改變該單位的輸出必須受到限制。
2.3.2鍋爐汽輪機(jī)如下模式
這種控制模式,就是第一個(gè)能夠讓鍋爐列車電網(wǎng)負(fù)荷的需求,然后讓火車鍋爐蒸汽渦輪機(jī)??梢愿玫乇3制麎悍€(wěn)定和有利于鍋爐的穩(wěn)定運(yùn)行。但它并沒有充分利用積累的熱量f鍋爐調(diào)節(jié)單元的輸出,它更慢,單位滿足負(fù)載的需求,所以這種控制模式只被應(yīng)用到該單位承擔(dān)基本負(fù)荷。
2.3.3協(xié)調(diào)控制模
根據(jù)上述分析,它必須使用鍋爐蓄熱充分和合理的單位時(shí),具有較好的適應(yīng)性,功率安全運(yùn)行網(wǎng)絡(luò)負(fù)載。這是為了讓原汽輪機(jī)壓力的變化,然后兩個(gè)權(quán)力之間的協(xié)調(diào)監(jiān)管和壓力調(diào)節(jié)回路的相互作用合理,所以該單位的產(chǎn)出滿足電網(wǎng)負(fù)荷的需求及時(shí),保證了機(jī)組穩(wěn)定運(yùn)行的控制要求。實(shí)際的方法是適當(dāng)引入前饋控制系統(tǒng),使上述鍋爐和汽輪機(jī)相互協(xié)調(diào),以便協(xié)調(diào)控制各種適合于實(shí)際工程中可以達(dá)到,如計(jì)劃:協(xié)調(diào)控制系統(tǒng)基于“蒸汽鍋爐如下渦輪“或“蒸汽渦輪如下鍋爐“。
2.3.3.1基本功能的協(xié)調(diào)控制系統(tǒng)。
協(xié)調(diào)各火電機(jī)組控制系統(tǒng)通常應(yīng)具有以下功能:(l) 選擇不同的加載指令根據(jù)機(jī)組運(yùn)行狀況和電網(wǎng)為單位的要求。(2)限制負(fù)荷指令的變化率。(3)。計(jì)算最大可能的輸出的單位和限制負(fù)荷最大和最小幅度。(4)。具備RUNBACK功能。(5)。選擇不同的運(yùn)行模式,根據(jù)機(jī)組運(yùn)行工況。(6)。計(jì)算實(shí)際的單位產(chǎn)量。(7)。讓自動化控制系統(tǒng)有足夠的穩(wěn)定和更好的整體性數(shù)量豐富。(8)。有諸如啟動旁路系統(tǒng),防止超速等必要的保護(hù)措施汽輪機(jī)...,當(dāng)本機(jī)和電網(wǎng)團(tuán)結(jié),因?yàn)橥蝗话l(fā)生意外。
2.3.3.2基本組成單位協(xié)調(diào)控制系統(tǒng)。
現(xiàn)在,協(xié)調(diào)控制系統(tǒng)的單位是由兩個(gè)部分,分別是負(fù)載教學(xué)過程和協(xié)調(diào)鍋爐和汽輪機(jī)控制為圖1所示,組成
其中,負(fù)載教學(xué)過程是由單位計(jì)算循環(huán),允許負(fù)荷計(jì)算負(fù)荷限制回路和循環(huán)機(jī)組。協(xié)調(diào)和蒸汽渦輪控制器。
2.3.3.3協(xié)調(diào)控制的火電機(jī)組現(xiàn)代化大型火電機(jī)組控制系統(tǒng)的實(shí)現(xiàn)采用分布式系統(tǒng),實(shí)現(xiàn)了自動化控制,保證機(jī)組安全經(jīng)濟(jì)運(yùn)行的單位。 TEKEPERM- ME公司選擇西門子是實(shí)現(xiàn)協(xié)調(diào)控制的火電機(jī)組包括圖2所示的幾個(gè)部分系統(tǒng)。
圖2機(jī)組協(xié)調(diào)控制系統(tǒng)的實(shí)現(xiàn)框圖
當(dāng)每個(gè)子系統(tǒng)的正常運(yùn)行的單位,啟動了協(xié)調(diào)控制模式模式。在這種模式下,汽輪機(jī)和鍋爐接受并行加載指令。通過改變鍋爐燃燒率維持主蒸汽壓力,蒸汽渦輪機(jī)的壓力和設(shè)定值。當(dāng)原汽輪機(jī)壓力和設(shè)定值的偏差超過一定限值,由汽輪機(jī)主蒸汽定值控制回路開度指令限制,直至鍋爐內(nèi)的壓力控制范圍的偏差。
3.結(jié)論
總之,從系統(tǒng)的角度,對火電機(jī)組自動化控制系統(tǒng)分為幾個(gè)子系統(tǒng),以及單位的設(shè)計(jì)和實(shí)施協(xié)調(diào)控制系統(tǒng),本文證明。大型機(jī)組協(xié)調(diào)控制具有更快的性能和尾隨更好的穩(wěn)定性和魯棒性。該單位的最優(yōu)整體運(yùn)行效果的目的,是實(shí)現(xiàn)協(xié)調(diào)的子系統(tǒng)。
參考
[1]敻書儼,Wangxingye,天演。分布式火電廠,科學(xué)出版社控制系統(tǒng)。
北京P.R中國,20003
[2]鐘新元。DEB協(xié)調(diào)控制系統(tǒng)在火電廠,電力科學(xué)與工程,2003(3):50- 53。
傳記作家
Jianyan田,副教授,現(xiàn)為南京航空航天大學(xué)博士生。她的研究是在智能控制,系統(tǒng)工程和灰色系統(tǒng)理論的目的。
麗珍鍋是在2002年攻讀碩士學(xué)位的學(xué)生。她的研究是在智能控制理論及應(yīng)用目的。