高三數(shù)學復習Tag內容描述:
1、含雙重量詞的不等式 恒成立與存在性問題,復習,對于恒成立問題與存在性問題有以下兩個基本事實,同樣地,,2,-3,3,最大值f(-3)=147-c,最小值f(2)=-c-28,g(x)在(-3,2)遞減,在(2,3)遞增, g(2)=-48,g(-3)=102,g(3)=12,2,-3,3,解:,所以,147-c-48,即c195,2,-3,3,最大值f(-3)=147-c,最小值f(2)=-c-28,g(x)在(-3,2)遞減,在(2,3)遞增, g(2)=-48,g(-3)=102,g(3)=12,2,-3,3,解:,所以,-c-28102,即c-130,2,-3,3,最大值f(-3)=147-c,最小值f(2)=-c-28,g(x)在(-3,2)遞減,在(2,3)遞增, g(2)=-48,g(-3)=102,g(3)=12,2,-3,3,解:,所以。
2、曲線系過定點問題,類型一 已知曲線系方程求定點,類型一 已知曲線系方程求定點,類型二 求曲線系方程并證明其過定點,(法一)解:依題意直線存在斜率,且不為0,設其方程為y=kx+b,,代入*式得,所以,直線PQ過定點(1,0),(法二),小試身手,M,N,C,作業(yè),小試身手,課后作業(yè):,思考。
3、定值、定點與存在性問題,例1 已知動圓過定點A(4,0),且在y軸上截得弦MN的長為8. (1)求動圓圓心的軌跡C的方程; (2)已知點B(1,0),設不垂直于x軸的直線l與軌跡C交于不同的兩點P,Q,若x軸是PBQ的角平分線,證明直。
4、排列組合的綜合應用,排列組合中的幾何問題依然是利用兩個基本原理求解,并注意到分類的不重不漏 例1 (1)平面上有9個點,其中有4個點共線,除此外無3點共線 用這9個點可以確定多少條直線? 用這9個點可以確。
5、2 1參數(shù)方程 1 參數(shù)方程的概念 一般地 在平面直角坐標系中 如果曲線上任意一點的坐標x y都是某個變數(shù)t的函數(shù) 并且對于t的每一個允許值 由方程組所確定的點M x y 都在這條曲線上 那么方程組就叫做這條曲線的參數(shù)方程。
6、正弦定理 可以解決兩類有關三角形的問題 1 已知兩角和任一邊 2 已知兩邊和一邊的對角 變型 復習回顧 余弦定理 C B A c a b 探究 若 ABC為任意三角形 已知角C a b 求邊c 設 由向量減法的三角形法則得 C B A c a b 余。
7、數(shù)列的有關概念 傳說古希臘畢達哥拉斯學派的數(shù)學家經常在沙灘上研究數(shù)學問題 他們在沙灘上畫點或者用小石子來表示一系列的數(shù) 比如 他們研究過這些數(shù) 1 3 6 10 他們將這些數(shù)按照如下方式擺放 三角形數(shù) 本課引入 類似。
8、y ax 指數(shù)函數(shù) 指數(shù)函數(shù)的概念 函數(shù)y ax叫作指數(shù)函數(shù) 指數(shù)自變量 底數(shù) a 0且a 1 常數(shù) 問題提出 怎樣研究指數(shù)函數(shù)的圖像和性質 進入畫板 1 定義域為 值域為 0 2 圖像都過點 0 1 當x 0時 y 1 4 是R上的增函數(shù) 4 是R上。
9、數(shù)列的概念與簡單表示法 64個格子 1 2 2 3 3 4 4 5 5 1 6 6 7 7 8 8 OK 4 5 6 7 8 1 5 6 7 8 1 2 3 3 4 2 64個格子 你若是國王你能滿足上述要求嗎 每個格子里的麥粒數(shù)都是 前 一個格子里麥粒數(shù)的 2倍 且共有 64 格子。
10、指數(shù)函數(shù)2 R 0 0 1 指數(shù)函數(shù)的圖象和性質 增函數(shù) 減函數(shù) 非奇非偶 非奇非偶 6 當x 0時 y 1 當x 0時 0 y 1 6 當x o時 01 復習 習題一 1 比較 2 1 5 的大小是 分析 考察函數(shù)y x 它是減函數(shù) 而 2 比較0 60 6 0 60 7 0 7。
11、對數(shù)的概念 引入 1 莊子 一尺之棰 日取其半 萬世不竭 1 取4次 還有多長 2 取多少次 還有0 125尺 2 假設2002年我國國民生產總值為a億元 如果每年平均增長8 那么經過多少年國民生產總值是2002年的2倍 抽象出 1 這是已。
12、利用二分法求方程的近似解 問題1 算一算 查找線路電線 水管 氣管等管道線路故障 定義 每次取中點 將區(qū)間一分為二 再經比較 按需要留下其中一個小區(qū)間的方法叫二分法 也叫對分法 常用于 在一個風雨交加的夜里 從某水。
13、4 1 1利用函數(shù)性質判定方程解的存在 問題提出 方程與函數(shù)都是代數(shù)的重要內容多數(shù)方程沒有求解公式如何利用方程與函數(shù)的關系求方程的解 實例分析 判斷方程x2 x 6 0解的存在 x2 x 6 3 4 6 F x 0 抽象概括 y f x 的圖像。
14、對數(shù)的運算 一般地 如果 的b次冪等于N 就是 那么數(shù)b叫做 以a為底N的對數(shù) 記作 a叫做對數(shù)的底數(shù) N叫做真數(shù) 定義 復習上節(jié)內容 有關性質 負數(shù)與零沒有對數(shù) 在指數(shù)式中N 0 對數(shù)恒等式 復習上節(jié)內容 常用對數(shù) 我們通常將。
15、對數(shù)函數(shù) 細胞分裂問題 細胞的個數(shù)是分裂次數(shù)的指數(shù)函數(shù) 反之 細胞分裂的次數(shù)是細胞個數(shù)的函數(shù)由對數(shù)定義 即 次數(shù)y是個數(shù)x的函數(shù) 定義 函數(shù)叫做對數(shù)函數(shù) 它是指數(shù)函數(shù)的反函數(shù) 對數(shù)函數(shù)的定義域為 值域為 溫故知新 先看y 2x與y log2x 指數(shù)函數(shù) 對數(shù)函數(shù)的圖像有何關系呢 y 2x 圖像的關系 y 2x y x y 2x y x y log2x y 2x 對數(shù)函數(shù) 解析式 y logax a。