人教版中考復(fù)習(xí)地理 中國(guó)的自然資源 專項(xiàng)訓(xùn)練。人教版中考復(fù)習(xí)地理 發(fā)展與合作 專項(xiàng)訓(xùn)練。人教版中考復(fù)習(xí)地理 中國(guó)的經(jīng)濟(jì)發(fā)展 專項(xiàng)訓(xùn)練。人教版中考復(fù)習(xí)地理 中國(guó)的自然環(huán)境 專項(xiàng)訓(xùn)練。人教版中考復(fù)習(xí)地理 地圖的閱讀 專項(xiàng)訓(xùn)練。人教版中考復(fù)習(xí)地理 中國(guó)的疆域和人口 專項(xiàng)訓(xùn)練。2 . 圖中A省是。
專項(xiàng)訓(xùn)練Tag內(nèi)容描述:
1、______________________________________________________________________________________________________________新目標(biāo)英語八年級(jí)下冊(cè)復(fù)習(xí) 專項(xiàng)訓(xùn)練Unit 1一、根據(jù)漢意和題意寫單詞1.Jim was ill and he had a high ___________(發(fā)燒).2. Jim always buys very big shoes because he has big _________(腳).3. Something is wrong with your legs, so __________(躺) down and have a good rest.4. All the _______ (乘客)got off the bus.5. A kind girl saved a sick man, but she got into _________(麻煩).6. Now no one can h。
2、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 三角函數(shù)(2)(含解析) 1、已知cos ,cos(),且0<<<, (1)求tan 2的值; (2)求. 解 (1)cos ,0<<,sin , tan 4, tan 2。
3、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 平面向量及其坐標(biāo)表示(含解析) 1、如圖,在平行四邊形ABCD中,M,N分別為DC,BC的中點(diǎn),已知c,d,試用c,d表示,. 解:設(shè)a,b, 則ad, bc.。
4、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 簡(jiǎn)單的邏輯連接詞(含解析) 1、已知命題p:x01,x10,那么p是( ) Ax1,x210 Bx1,x210 Cx01,x10 Dx01,x10 解析 (1)特。
5、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 函數(shù)與方程(含解析) 1設(shè)f(x)exx4,則函數(shù)f(x)的零點(diǎn)位于區(qū)間 ( ) A(1,0) B(0,1) C(1,2) D(2,3) 解析 f(x)exx4,f(x)ex10。
6、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 平面向量的數(shù)量積(含解析) 1、 (1)(xx威海期末考試)已知a(1,2),2ab(3,1),則ab( ) A2 B3 C4 D5 (2)(xx江西卷)設(shè)e1,e2為單位向量,且e1,e2的夾角為。
7、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 函數(shù)(含解析) 1記f(x)lg(2x3)的定義域?yàn)榧螹,函數(shù)g(x)的定義域?yàn)榧螻,求: (1)集合M,N;(2)集合MN,MN. 解 (1)Mx|2x30, Nx|x3,或x<1。
8、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 線性規(guī)劃(含解析) 1、不等式組表示的平面區(qū)域的面積為 ( ) A4 B1 C5 D無窮大 解析:不等式組表示的平面區(qū)域如圖所示(陰影部分),ABC的面積即為所求 求出。
9、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 指數(shù)函數(shù)、對(duì)數(shù)函數(shù)(含解析) 1(12分)已知函數(shù)f(x). (1)判斷函數(shù)f(x)的奇偶性; (2)求證f(x)在R上為增函數(shù) (1)解 因?yàn)楹瘮?shù)f(x)的定義域?yàn)镽,且f(x)1,所以f(x。
10、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 等比數(shù)列(含解析) 1、設(shè)數(shù)列an的前n項(xiàng)和為Sn,若對(duì)于任意的正整數(shù)n都有Sn2an3n,設(shè)bnan3. 求證:數(shù)列bn是等比數(shù)列,并求an. 證明 由Sn2an3n對(duì)于任意的正整。
11、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 數(shù)列及其表示(含解析) 1、根據(jù)下面各數(shù)列前幾項(xiàng)的值,寫出數(shù)列的一個(gè)通項(xiàng)公式: (1)1,7,13,19,; (2),; (3),2,8,; (4)5,55,555,5 555,.。
12、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 解三角形(含解析) 1、(xx湖南卷)在銳角ABC中,角A,B所對(duì)的邊長(zhǎng)分別為a,b.若2asin Bb,則角A等于 ( ) A. B. C. D. 解析:在ABC。
13、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 函數(shù)的應(yīng)用(含解析) 1某公司在甲、乙兩地銷售一種品牌車,利潤(rùn)(單位:萬元)分別為L(zhǎng)15.06x0.15x2和L22x,其中x為銷售量(單位:輛)若該公司在這兩地共銷售15輛車。
14、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 冪函數(shù)、二次函數(shù)(含解析) 1下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是 ( ) Ay(xR,且x0) Byx(xR) Cyx(xR) Dyx3(xR) 解。
15、專項(xiàng)訓(xùn)練列式計(jì)算 1、325里面有多少個(gè)5? 2、396是33的多少倍? 3、把643平均分成32份,每份是多少?還余幾? 4、128的15倍是多少? 5、被除數(shù)是2438,商是53,除數(shù)是多少? 6、一個(gè)數(shù)的25倍比1300少100,這個(gè)數(shù)。
16、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 平面向量的概念及線性運(yùn)算(含解析) 1下列命題中,正確的是( ) A若|a|b|,則ab或ab B若ab0,則a0或b0 C若ka0,則k0或a0 D若a,b都是非零。
17、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 數(shù)列求和(含解析) 1、已知數(shù)列an的通項(xiàng)公式是an23n1(1)n(ln 2ln 3)(1)nnln 3,求其前n項(xiàng)和Sn. 解 Sn2(133n1)111(1)n(ln 2。
18、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 等差數(shù)列(含解析) 1、在等差數(shù)列an中,a11,a33. (1)求數(shù)列an的通項(xiàng)公式; (2)若數(shù)列an的前k項(xiàng)和Sk35,求k的值 解 (1)設(shè)等差數(shù)列an的公差為d,則ana1。
19、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 函數(shù)的圖像(含解析) 1、 (xx山東卷)函數(shù)yxcos xsin x的圖象大致為( ) 解析 函數(shù)yxcos xsin x在x時(shí)為負(fù),排除A;易知函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱, 排除B。
20、2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)訓(xùn)練 對(duì)數(shù)函數(shù)(含解析) 1、已知函數(shù)f(x)滿足:當(dāng)x4時(shí),f(x)x;當(dāng)x4時(shí),f(x)f(x1)則f(2log23)( ) A. B. C. D. 解析: 答案A 2、 (1)已知loga2。